login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130510
ABC conjecture: values of c in the list of "abc-hits".
15
9, 32, 49, 64, 81, 81, 125, 128, 225, 243, 245, 250, 256, 256, 289, 343, 375, 512, 512, 513, 539, 625, 625, 625, 676, 729, 729, 729, 729, 961, 968, 1025, 1029, 1216, 1331, 1331, 1331, 1369, 1587, 1681, 2048, 2048, 2048, 2057, 2187, 2187, 2187, 2197, 2197
OFFSET
1,1
COMMENTS
Let rad(x) be the function that computes the squarefree kernel of x (see A007947). A triple {a,b,c} of positive integers with a+b=c, gcd(a,b)=1 and c > rad(a*b*c) is called an abc-hit. The corresponding values of a and rad(a*b*c) are in the sequences A130511 and A130512.
REFERENCES
LINKS
T. D. Noe, Table of n, a(n) for n=1..1269 (for c up to 10^6)
Sander R. Dahmen, Lower bounds for numbers of ABC-hits, J. Numb. Theory, Volume 128, Issue 6, June 2008, pp. 1864-1873.
Noam D. Elkies, The ABC's of Number Theory, The Harvard College Mathematics Review, Vol. 1, No. 1, Spring 2007, pp. 57-76.
Brian Hayes, Easy as abc
Wikipedia, abc conjecture
EXAMPLE
81 appears twice because 1+80=81 and 32+49=81 are two abc-hits.
MATHEMATICA
rad[n_] := If[n==1, 1, Times@@(Transpose[FactorInteger[n]][[1]])]; nn=1000; Do[If[ !PrimeQ[c], Do[b=c-a; If[GCD[a, b]==1 && rad[a*b*c]<c, Print[{a, b, c, rad[a*b*c]}]], {a, c/2}]], {c, 2, nn}]
PROG
(Python)
from itertools import count, islice
from math import prod, gcd
from sympy import primefactors
def A130510_gen(startvalue=1): # generator of terms >= startvalue
for c in count(max(startvalue, 1)):
pc = set(primefactors(c))
for a in range(1, (c>>1)+1):
b = c-a
if gcd(a, b)==1 and c>prod(set(primefactors(a))|set(primefactors(b))|pc):
yield c
A130510_list = list(islice(A130510_gen(), 30)) # Chai Wah Wu, Oct 19 2023
CROSSREFS
Cf. A120498 (unique values of c).
Cf. A130511, A130512 (a, and rad(a*b*c)).
Cf. A225425 (number of solutions with c < 10^n).
Cf. A225426 (triples of numbers a,b,c).
Sequence in context: A141573 A075433 A018833 * A120498 A155098 A063134
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 01 2007
STATUS
approved