login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281669 Expansion of Sum_{i>=1} x^(i^3)/(1 + x^(i^3)) * Product_{j>=1} (1 + x^(j^3)). 0
1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 3, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

Total number of parts in all partitions of n into distinct cubes.

LINKS

Table of n, a(n) for n=1..100.

Index entries for related partition-counting sequences

FORMULA

G.f.: Sum_{i>=1} x^(i^3)/(1 + x^(i^3)) * Product_{j>=1} (1 + x^(j^3)).

EXAMPLE

a(36) = 3 because we have [27, 8, 1].

MATHEMATICA

nmax = 100; Rest[CoefficientList[Series[Sum[x^i^3/(1 + x^i^3), {i, 1, nmax}] Product[1 + x^j^3, {j, 1, nmax}], {x, 0, nmax}], x]]

CROSSREFS

Cf. A000578, A015723, A279329, A281542, A281613.

Sequence in context: A000038 A063667 A228594 * A014083 A238403 A112315

Adjacent sequences:  A281666 A281667 A281668 * A281670 A281671 A281672

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jan 26 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 10:29 EST 2018. Contains 299385 sequences. (Running on oeis4.)