login
Expansion of Sum_{i>=1} x^(i^3)/(1 + x^(i^3)) * Product_{j>=1} (1 + x^(j^3)).
0

%I #4 Jan 27 2017 13:07:14

%S 1,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,

%T 2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,

%U 0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,3,4

%N Expansion of Sum_{i>=1} x^(i^3)/(1 + x^(i^3)) * Product_{j>=1} (1 + x^(j^3)).

%C Total number of parts in all partitions of n into distinct cubes.

%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>

%F G.f.: Sum_{i>=1} x^(i^3)/(1 + x^(i^3)) * Product_{j>=1} (1 + x^(j^3)).

%e a(36) = 3 because we have [27, 8, 1].

%t nmax = 100; Rest[CoefficientList[Series[Sum[x^i^3/(1 + x^i^3), {i, 1, nmax}] Product[1 + x^j^3, {j, 1, nmax}], {x, 0, nmax}], x]]

%Y Cf. A000578, A015723, A279329, A281542, A281613.

%K nonn

%O 1,9

%A _Ilya Gutkovskiy_, Jan 26 2017