|
|
A281668
|
|
Expansion of Sum_{p prime, i>=1} x^(p^i)/(1 + x^(p^i)) * Product_{p prime, j>=1} (1 + x^(p^j)).
|
|
1
|
|
|
0, 1, 1, 1, 3, 2, 5, 3, 8, 7, 10, 12, 13, 20, 18, 26, 25, 36, 34, 45, 47, 59, 62, 71, 82, 91, 105, 112, 132, 143, 163, 174, 201, 220, 244, 266, 298, 327, 362, 388, 437, 470, 521, 558, 621, 671, 733, 788, 864, 938, 1011, 1100, 1182, 1295, 1379, 1501, 1606, 1753, 1861, 2017, 2158, 2335, 2493, 2672, 2871, 3078
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Total number of parts in all partitions of n into distinct prime power parts (1 excluded).
|
|
LINKS
|
Table of n, a(n) for n=1..66.
Index entries for related partition-counting sequences
|
|
FORMULA
|
G.f.: Sum_{p prime, i>=1} x^(p^i)/(1 + x^(p^i)) * Product_{p prime, j>=1} (1 + x^(p^j)).
|
|
EXAMPLE
|
a(10) = 7 because we have [8, 2], [7, 3], [5, 3, 2] and 2 + 2 + 3 = 7.
|
|
MATHEMATICA
|
nmax = 66; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[i]] x^i/(1 + x^i), {i, 2, nmax}] Product[1 + Floor[1/PrimeNu[j]] x^j, {j, 2, nmax}], {x, 0, nmax}], x]]
|
|
CROSSREFS
|
Cf. A015723, A024938, A054685, A246655, A281616.
Sequence in context: A181771 A238628 A045766 * A132817 A131025 A340702
Adjacent sequences: A281665 A281666 A281667 * A281669 A281670 A281671
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Jan 26 2017
|
|
STATUS
|
approved
|
|
|
|