login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281616
Expansion of Sum_{p prime, i>=1} x^(p^i)/(1 - x^(p^i)) / Product_{p prime, j>=1} (1 - x^(p^j)).
1
0, 1, 1, 3, 3, 7, 8, 15, 18, 28, 36, 53, 66, 91, 117, 156, 195, 254, 318, 407, 503, 630, 777, 965, 1176, 1439, 1750, 2124, 2559, 3078, 3692, 4417, 5257, 6246, 7405, 8753, 10314, 12127, 14233, 16668, 19464, 22687, 26406, 30662, 35539, 41109, 47495, 54767, 63044, 72454, 83167, 95305, 109054, 124607, 142209, 162076, 184464
OFFSET
1,4
COMMENTS
Total number of parts in all partitions of n into prime power parts (1 excluded).
Convolution of A001222 and A023894.
FORMULA
G.f.: Sum_{p prime, i>=1} x^(p^i)/(1 - x^(p^i)) / Product_{p prime, j>=1} (1 - x^(p^j)).
EXAMPLE
a(9) = 18 because we have [9], [7, 2], [5, 4], [5, 2, 2], [4, 3, 2], [3, 3, 3], [3, 2, 2, 2] and 1 + 2 + 2 + 3 + 3 + 3 + 4 = 18.
MATHEMATICA
nmax = 57; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[i]] x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - Floor[1/PrimeNu[j]] x^j, {j, 2, nmax}], {x, 0, nmax}], x]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 25 2017
STATUS
approved