login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086543
Number of partitions of n with at least one odd part.
34
0, 1, 1, 3, 3, 7, 8, 15, 17, 30, 35, 56, 66, 101, 120, 176, 209, 297, 355, 490, 585, 792, 946, 1255, 1498, 1958, 2335, 3010, 3583, 4565, 5428, 6842, 8118, 10143, 12013, 14883, 17592, 21637, 25525, 31185, 36711, 44583, 52382, 63261, 74173, 89134, 104303, 124754, 145698, 173525, 202268
OFFSET
0,4
COMMENTS
From Gus Wiseman, Oct 12 2023: (Start)
Also the number of integer partitions of n whose greatest part is not n/2, ranked by A366319. The a(1) = 1 through a(7) = 15 partitions are:
(1) (2) (3) (4) (5) (6) (7)
(21) (31) (32) (42) (43)
(111) (1111) (41) (51) (52)
(221) (222) (61)
(311) (411) (322)
(2111) (2211) (331)
(11111) (21111) (421)
(111111) (511)
(2221)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
Compare to the a(1) = 1 through a(7) = 15 partitions with at least one odd part, ranked by A366322:
(1) (11) (3) (31) (5) (33) (7)
(21) (211) (32) (51) (43)
(111) (1111) (41) (321) (52)
(221) (411) (61)
(311) (2211) (322)
(2111) (3111) (331)
(11111) (21111) (421)
(111111) (511)
(2221)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
(End)
LINKS
FORMULA
A000041(n) if n is odd; otherwise, A000041(n) - A000041(n/2).
G.f.: Sum_{k>=1} x^(2k-1)/((Product_{j=1..2k-1} (1-x^j))*(Product_{j>=k} (1-x^(2j)))). - Emeric Deutsch, Mar 30 2006
G.f.: 1/E(x) - 1/E(x^2) where E(x) = prod(n>=1, 1-x^n ); see Pari code. - Joerg Arndt, May 04 2013
EXAMPLE
a(4)=3 because we have [3,1],[2,1,1] and [1,1,1] ([4] and [2,2] do not qualify).
MAPLE
g:=sum(x^(2*k-1)/product(1-x^j, j=1..2*k-1)/product(1-x^(2*j), j=k..70), k=1..70): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=0..45); # Emeric Deutsch, Mar 30 2006
MATHEMATICA
nn=50; CoefficientList[Series[Sum[x^(2k-1)/Product[1-x^j, {j, 1, 2k-1}] /Product[(1-x^(2j)), {j, k, nn}], {k, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 28 2013 *)
Table[Length[Select[IntegerPartitions[n], Max[#]!=n/2&]], {n, 0, 30}] (* Gus Wiseman, Oct 12 2023 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(1/eta(x)-1/eta(x^2)) ) \\ Joerg Arndt, May 04 2013
CROSSREFS
The complement is counted by A035363, ranks A344415.
These partitions have ranks A366322.
A025065 counts partitions with sum <= twice length, ranks A344296.
A110618 counts partitions with sum >= twice maximum, ranks A344291.
Sequence in context: A218573 A117989 A241642 * A281616 A110618 A320291
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 10 2003
STATUS
approved