OFFSET
0,4
COMMENTS
From Gus Wiseman, Oct 12 2023: (Start)
Also the number of integer partitions of n whose greatest part is not n/2, ranked by A366319. The a(1) = 1 through a(7) = 15 partitions are:
(1) (2) (3) (4) (5) (6) (7)
(21) (31) (32) (42) (43)
(111) (1111) (41) (51) (52)
(221) (222) (61)
(311) (411) (322)
(2111) (2211) (331)
(11111) (21111) (421)
(111111) (511)
(2221)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
Compare to the a(1) = 1 through a(7) = 15 partitions with at least one odd part, ranked by A366322:
(1) (11) (3) (31) (5) (33) (7)
(21) (211) (32) (51) (43)
(111) (1111) (41) (321) (52)
(221) (411) (61)
(311) (2211) (322)
(2111) (3111) (331)
(11111) (21111) (421)
(111111) (511)
(2221)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
(End)
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
FORMULA
G.f.: Sum_{k>=1} x^(2k-1)/((Product_{j=1..2k-1} (1-x^j))*(Product_{j>=k} (1-x^(2j)))). - Emeric Deutsch, Mar 30 2006
G.f.: 1/E(x) - 1/E(x^2) where E(x) = prod(n>=1, 1-x^n ); see Pari code. - Joerg Arndt, May 04 2013
EXAMPLE
a(4)=3 because we have [3,1],[2,1,1] and [1,1,1] ([4] and [2,2] do not qualify).
MAPLE
g:=sum(x^(2*k-1)/product(1-x^j, j=1..2*k-1)/product(1-x^(2*j), j=k..70), k=1..70): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=0..45); # Emeric Deutsch, Mar 30 2006
MATHEMATICA
nn=50; CoefficientList[Series[Sum[x^(2k-1)/Product[1-x^j, {j, 1, 2k-1}] /Product[(1-x^(2j)), {j, k, nn}], {k, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 28 2013 *)
Table[Length[Select[IntegerPartitions[n], Max[#]!=n/2&]], {n, 0, 30}] (* Gus Wiseman, Oct 12 2023 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(1/eta(x)-1/eta(x^2)) ) \\ Joerg Arndt, May 04 2013
CROSSREFS
These partitions have ranks A366322.
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 10 2003
STATUS
approved