OFFSET
0,5
COMMENTS
Also the number of integer partitions of n that are the vertex-degrees of some set multipartition (multiset of nonempty sets) with no singletons. - Gus Wiseman, Oct 30 2018
FORMULA
EXAMPLE
a(5) = 3 since 5 can be partitioned as 1+1+1+1+1, 2+1+1+1, or 2+2+1; not counted are 5, 4+1, or 3+2.
a(6) = 7 since 6 can be partitioned as 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+1+3, 1+2+3, 3+3; not counted are 1+1+4, 2+4, 1+5, 6.
From Gus Wiseman, Oct 30 2018: (Start)
The a(2) = 1 through a(8) = 15 partitions with no part larger than n/2:
(11) (111) (22) (221) (33) (322) (44)
(211) (2111) (222) (331) (332)
(1111) (11111) (321) (2221) (422)
(2211) (3211) (431)
(3111) (22111) (2222)
(21111) (31111) (3221)
(111111) (211111) (3311)
(1111111) (4211)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
The a(2) = 1 through a(8) = 15 partitions into n/2 or fewer parts:
(2) (3) (4) (5) (6) (7) (8)
(22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(51) (61) (62)
(222) (322) (71)
(321) (331) (332)
(411) (421) (422)
(511) (431)
(521)
(611)
(2222)
(3221)
(3311)
(4211)
(5111)
The a(6) = 7 integer partitions of 6 with no part larger than n/2 together with a realizing set multipartition of each (the parts of the partition count the appearances of each vertex in the set multipartition):
(33): {{1,2},{1,2},{1,2}}
(321): {{1,2},{1,2},{1,3}}
(3111): {{1,2},{1,3},{1,4}}
(222): {{1,2,3},{1,2,3}}
(2211): {{1,2},{1,2,3,4}}
(21111): {{1,2},{1,3,4,5}}
(111111): {{1,2,3,4,5,6}}
(End)
MAPLE
A000070 := proc(n) add( combinat[numbpart](i), i=0..n) ; end proc:
A110618 := proc(n) combinat[numbpart](n) - A000070(floor((n-1)/2)) ; end proc: # R. J. Mathar, Jan 24 2011
MATHEMATICA
f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; g[n_] := f[n, Floor[n/2]]; g[0] = 1; g[1] = 0; Array[g, 47, 0] (* Robert G. Wilson v, Jan 23 2011 *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multhyp[m_]:=Select[mps[m], And[And@@UnsameQ@@@#, Min@@Length/@#>1]&];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[n], multhyp[#]!={}&]], {n, 8}] (* Gus Wiseman, Oct 30 2018 *)
PROG
(PARI) a(n) = numbpart(n) - sum(i=0, if (n%2, n\2, n/2-1), numbpart(i)); \\ Michel Marcus, Oct 31 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Aug 01 2005
STATUS
approved