login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110618 Number of partitions of n with no part larger than n/2. Also partitions of n into n/2 or fewer parts. 18
1, 0, 1, 1, 3, 3, 7, 8, 15, 18, 30, 37, 58, 71, 105, 131, 186, 230, 318, 393, 530, 653, 863, 1060, 1380, 1686, 2164, 2637, 3345, 4057, 5096, 6158, 7665, 9228, 11395, 13671, 16765, 20040, 24418, 29098, 35251, 41869, 50460, 59755, 71669, 84626, 101050 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Also the number of integer partitions of n that are the vertex-degrees of some set multipartition (multiset of nonempty sets) with no singletons. - Gus Wiseman, Oct 30 2018

LINKS

Table of n, a(n) for n=0..46.

FORMULA

a(n) = A000041(n) - Sum_{i=0..floor((n-1)/2)} A000041(i) = A000041(n) - A000070(floor((n-1)/2)) = A110619(n, 2).

a(2*n) = A209816(n). - Gus Wiseman, Oct 30 2018

EXAMPLE

a(5) = 3 since 5 can be partitioned as 1+1+1+1+1, 2+1+1+1, or 2+2+1; not counted are 5, 4+1, or 3+2.

a(6) = 7 since 6 can be partitioned as 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+1+3, 1+2+3, 3+3; not counted are 1+1+4, 2+4, 1+5, 6.

From Gus Wiseman, Oct 30 2018: (Start)

The a(2) = 1 through a(8) = 15 partitions with no part larger than n/2:

  (11)  (111)  (22)    (221)    (33)      (322)      (44)

               (211)   (2111)   (222)     (331)      (332)

               (1111)  (11111)  (321)     (2221)     (422)

                                (2211)    (3211)     (431)

                                (3111)    (22111)    (2222)

                                (21111)   (31111)    (3221)

                                (111111)  (211111)   (3311)

                                          (1111111)  (4211)

                                                     (22211)

                                                     (32111)

                                                     (41111)

                                                     (221111)

                                                     (311111)

                                                     (2111111)

                                                     (11111111)

The a(2) = 1 through a(8) = 15 partitions into n/2 or fewer parts:

  (2)  (3)  (4)   (5)   (6)    (7)    (8)

            (22)  (32)  (33)   (43)   (44)

            (31)  (41)  (42)   (52)   (53)

                        (51)   (61)   (62)

                        (222)  (322)  (71)

                        (321)  (331)  (332)

                        (411)  (421)  (422)

                               (511)  (431)

                                      (521)

                                      (611)

                                      (2222)

                                      (3221)

                                      (3311)

                                      (4211)

                                      (5111)

The a(6) = 7 integer partitions of 6 with no part larger than n/2 together with a realizing set multipartition of each (the parts of the partition count the appearances of each vertex in the set multipartition):

      (33): {{1,2},{1,2},{1,2}}

     (321): {{1,2},{1,2},{1,3}}

    (3111): {{1,2},{1,3},{1,4}}

     (222): {{1,2,3},{1,2,3}}

    (2211): {{1,2},{1,2,3,4}}

   (21111): {{1,2},{1,3,4,5}}

  (111111): {{1,2,3,4,5,6}}

(End)

MAPLE

A000070 := proc(n) add( combinat[numbpart](i), i=0..n) ; end proc:

A110618 := proc(n) combinat[numbpart](n) - A000070(floor((n-1)/2)) ; end proc: # R. J. Mathar, Jan 24 2011

MATHEMATICA

f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; g[n_] := f[n, Floor[n/2]]; g[0] = 1; g[1] = 0; Array[g, 47, 0] (* Robert G. Wilson v, Jan 23 2011 *)

sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];

mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

multhyp[m_]:=Select[mps[m], And[And@@UnsameQ@@@#, Min@@Length/@#>1]&];

strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];

Table[Length[Select[strnorm[n], multhyp[#]!={}&]], {n, 8}] (* Gus Wiseman, Oct 30 2018 *)

PROG

(PARI) a(n) = numbpart(n) - sum(i=0, if (n%2, n\2, n/2-1), numbpart(i)); \\ Michel Marcus, Oct 31 2018

CROSSREFS

Cf. A000070, A000569, A025065, A049311, A096373, A116540, A147878, A209816, A283877, A306005, A320921.

Sequence in context: A241642 A086543 A281616 * A320291 A320294 A304179

Adjacent sequences:  A110615 A110616 A110617 * A110619 A110620 A110621

KEYWORD

nonn

AUTHOR

Henry Bottomley, Aug 01 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 19:59 EDT 2021. Contains 345365 sequences. (Running on oeis4.)