Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Aug 01 2019 00:07:48
%S 1,0,1,1,3,3,7,8,15,18,30,37,58,71,105,131,186,230,318,393,530,653,
%T 863,1060,1380,1686,2164,2637,3345,4057,5096,6158,7665,9228,11395,
%U 13671,16765,20040,24418,29098,35251,41869,50460,59755,71669,84626,101050
%N Number of partitions of n with no part larger than n/2. Also partitions of n into n/2 or fewer parts.
%C Also the number of integer partitions of n that are the vertex-degrees of some set multipartition (multiset of nonempty sets) with no singletons. - _Gus Wiseman_, Oct 30 2018
%F a(n) = A000041(n) - Sum_{i=0..floor((n-1)/2)} A000041(i) = A000041(n) - A000070(floor((n-1)/2)) = A110619(n, 2).
%F a(2*n) = A209816(n). - _Gus Wiseman_, Oct 30 2018
%e a(5) = 3 since 5 can be partitioned as 1+1+1+1+1, 2+1+1+1, or 2+2+1; not counted are 5, 4+1, or 3+2.
%e a(6) = 7 since 6 can be partitioned as 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+1+3, 1+2+3, 3+3; not counted are 1+1+4, 2+4, 1+5, 6.
%e From _Gus Wiseman_, Oct 30 2018: (Start)
%e The a(2) = 1 through a(8) = 15 partitions with no part larger than n/2:
%e (11) (111) (22) (221) (33) (322) (44)
%e (211) (2111) (222) (331) (332)
%e (1111) (11111) (321) (2221) (422)
%e (2211) (3211) (431)
%e (3111) (22111) (2222)
%e (21111) (31111) (3221)
%e (111111) (211111) (3311)
%e (1111111) (4211)
%e (22211)
%e (32111)
%e (41111)
%e (221111)
%e (311111)
%e (2111111)
%e (11111111)
%e The a(2) = 1 through a(8) = 15 partitions into n/2 or fewer parts:
%e (2) (3) (4) (5) (6) (7) (8)
%e (22) (32) (33) (43) (44)
%e (31) (41) (42) (52) (53)
%e (51) (61) (62)
%e (222) (322) (71)
%e (321) (331) (332)
%e (411) (421) (422)
%e (511) (431)
%e (521)
%e (611)
%e (2222)
%e (3221)
%e (3311)
%e (4211)
%e (5111)
%e The a(6) = 7 integer partitions of 6 with no part larger than n/2 together with a realizing set multipartition of each (the parts of the partition count the appearances of each vertex in the set multipartition):
%e (33): {{1,2},{1,2},{1,2}}
%e (321): {{1,2},{1,2},{1,3}}
%e (3111): {{1,2},{1,3},{1,4}}
%e (222): {{1,2,3},{1,2,3}}
%e (2211): {{1,2},{1,2,3,4}}
%e (21111): {{1,2},{1,3,4,5}}
%e (111111): {{1,2,3,4,5,6}}
%e (End)
%p A000070 := proc(n) add( combinat[numbpart](i),i=0..n) ; end proc:
%p A110618 := proc(n) combinat[numbpart](n) - A000070(floor((n-1)/2)) ; end proc: # _R. J. Mathar_, Jan 24 2011
%t f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; g[n_] := f[n, Floor[n/2]]; g[0] = 1; g[1] = 0; Array[g, 47, 0] (* _Robert G. Wilson v_, Jan 23 2011 *)
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t multhyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1]&];
%t strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t Table[Length[Select[strnorm[n],multhyp[#]!={}&]],{n,8}] (* _Gus Wiseman_, Oct 30 2018 *)
%o (PARI) a(n) = numbpart(n) - sum(i=0, if (n%2, n\2, n/2-1), numbpart(i)); \\ _Michel Marcus_, Oct 31 2018
%Y Cf. A000070, A000569, A025065, A049311, A096373, A116540, A147878, A209816, A283877, A306005, A320921.
%K nonn
%O 0,5
%A _Henry Bottomley_, Aug 01 2005