login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110621
Shadow of Pi.
2
1, 4, 18, 33, 42, 44, 50, 55, 90, 98, 195, 288, 311, 395, 457, 521, 859, 891, 898, 1848, 1876, 2717, 3688, 3757, 3796, 4733, 5243, 5301, 5321, 6295, 6389, 6434, 6526, 6556, 6634, 6650, 6690, 7318, 7938, 8027, 9013, 9293, 9327, 9409, 9462, 9883, 10053
OFFSET
1,2
COMMENTS
First differences are Pi's shadow. Never twice the same integer in sequence or first differences.
a(20) is 1848, not 993, since the latter would leave out the next 0 in Pi. - Michael S. Branicky, Jun 15 2021
LINKS
EXAMPLE
The first line hereunder is the sequence, the second line are the first differences:
1.4..18..33.42.44.50.55..90.98..195..288..311...
.3.14..15..9..2..6..5..35..8..97...93...23 <-- Pi shadow
(Pi=3.141592653589793238462643383279502884197169399...)
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Block[{c = RealDigits[Pi, 10, 300][[1]], k = 1, t = Table[a[i], {i, n - 1}]}, d = Drop[t, 1] - Drop[t, -1]; b = Drop[c, Length[ Flatten[ IntegerDigits /@ d]]]; e = Union[ Join[t, d]]; While[f = FromDigits[ Take[b, k]]; Position[e, f] != {} || b[[k + 1]] == 0, k++ ]; f + a[n - 1]]; Table[ a[n], {n, 47}] (* Robert G. Wilson v *)
PROG
(Python)
# download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then
# with open('pi-billion.txt', 'r') as f: pi = f.readline()
from sympy import S
pi = str(S.Pi.n(3*10**5)).replace('.', '') # alternatively
def aupton(terms):
global pi
alst, idx, seen = [1], 0, {0, 1}
while len(alst) < terms:
k = 1
while int(pi[idx:idx+k]) in seen or pi[idx+k] == '0': k += 1
diffn = int(digits_of_pi[idx:idx+k])
alst.append(alst[-1] + diffn)
seen |= {diffn, alst[-1]}
idx += k
return alst
print(aupton(47)) # Michael S. Branicky, Jun 15 2021
CROSSREFS
Cf. A000796.
Sequence in context: A095823 A092116 A083969 * A124978 A031081 A009956
KEYWORD
easy,nonn,base
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Oct 10 2005
STATUS
approved