login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110621 Shadow of Pi. 2
1, 4, 18, 33, 42, 44, 50, 55, 90, 98, 195, 288, 311, 395, 457, 521, 859, 891, 898, 1848, 1876, 2717, 3688, 3757, 3796, 4733, 5243, 5301, 5321, 6295, 6389, 6434, 6526, 6556, 6634, 6650, 6690, 7318, 7938, 8027, 9013, 9293, 9327, 9409, 9462, 9883, 10053 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

First differences are Pi's shadow. Never twice the same integer in sequence or first differences.

a(20) is 1848, not 993, since the latter would leave out the next 0 in Pi. - Michael S. Branicky, Jun 15 2021

LINKS

Michael S. Branicky, Table of n, a(n) for n = 1..10000

EXAMPLE

The first line hereunder is the sequence, the second line are the first differences:

1.4..18..33.42.44.50.55..90.98..195..288..311...

.3.14..15..9..2..6..5..35..8..97...93...23 <-- Pi shadow

(Pi=3.141592653589793238462643383279502884197169399...)

MATHEMATICA

a[1] = 1; a[n_] := a[n] = Block[{c = RealDigits[Pi, 10, 300][[1]], k = 1, t = Table[a[i], {i, n - 1}]}, d = Drop[t, 1] - Drop[t, -1]; b = Drop[c, Length[ Flatten[ IntegerDigits /@ d]]]; e = Union[ Join[t, d]]; While[f = FromDigits[ Take[b, k]]; Position[e, f] != {} || b[[k + 1]] == 0, k++ ]; f + a[n - 1]]; Table[ a[n], {n, 47}] (* Robert G. Wilson v *)

PROG

# download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then

# with open('pi-billion.txt', 'r') as f: pi = f.readline()

from sympy import S

pi = str(S.Pi.n(3*10**5)).replace('.', '') # alternatively

def aupton(terms):

    global pi

    alst, idx, seen = [1], 0, {0, 1}

    while len(alst) < terms:

        k = 1

        while int(pi[idx:idx+k]) in seen or pi[idx+k] == '0': k += 1

        diffn = int(digits_of_pi[idx:idx+k])

        alst.append(alst[-1] + diffn)

        seen |= {diffn, alst[-1]}

        idx += k

    return alst

print(aupton(47)) # Michael S. Branicky, Jun 15 2021

CROSSREFS

Cf. A000796.

Sequence in context: A095823 A092116 A083969 * A124978 A031081 A009956

Adjacent sequences:  A110618 A110619 A110620 * A110622 A110623 A110624

KEYWORD

easy,nonn,base

AUTHOR

Eric Angelini and Alexandre Wajnberg, Sep 14 2005

EXTENSIONS

More terms from Robert G. Wilson v, Oct 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 02:46 EST 2021. Contains 349445 sequences. (Running on oeis4.)