login
A095823
Denominators of certain upper bounds for Euler's number e.
1
1, 4, 18, 32, 600, 4320, 11760, 322560, 3265920, 1728000, 439084800, 821145600, 817689600, 1220496076800, 19615115520000, 111588212736000, 863812325376000, 115242726703104000, 15722836107264000, 3742926166425600000
OFFSET
1,2
COMMENTS
For the numerators see A095822.
e := Sum_{k>=0} 1/k! has (trivial) upper bound r(n) := A095822(n)/a(n), for every n >= 1. See the W. Lang link.
REFERENCES
M. Barner and F. Flohr, Analysis I, de Gruyter, 5te Auflage, 2000; pp. 117/8.
E. Kuz'min and A. I. Shirshov: On the number e, pp. 111-119, eq.(6), in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am.Math.Soc., 1999
FORMULA
a(n) = denominator(r(n)), with rational r(n) := (Sum_{k=0..n} 1/k!) + 1/(n*n!), n >= 1, written in lowest terms. For n*n! see A001563(n).
EXAMPLE
The positive rationals r(n), n >= 1: 3/1, 11/4, 49/18, 87/32, 1631/600, 11743/4320, 31967/11760, ...
CROSSREFS
Sequence in context: A053191 A003474 A337003 * A092116 A083969 A110621
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jun 11 2004
STATUS
approved