login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095822
Numerators of certain upper bounds for Euler's number e.
2
3, 11, 49, 87, 1631, 11743, 31967, 876809, 8877691, 4697191, 1193556233, 2232105163, 2222710781, 3317652307271, 53319412081141, 303328210950491, 2348085347268533, 313262209859119579, 42739099682215483
OFFSET
1,1
COMMENTS
e = Sum_{k>=0} 1/k! has upper bound r(n) = a(n)/A095823(n). See the W. Lang link.
REFERENCES
M. Barner and F. Flohr, Analysis I, de Gruyter, 5te Auflage, 2000; pp. 117/8.
E. Kuz'min and A. I. Shirshov: On the number e, pp. 111-119, eq.(6), in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am.Math.Soc., 1999
FORMULA
a(n) = numerator(r(n)), with rational r(n) = Sum_{k=0..n} 1/k! + 1/(n*n!), n>=1, written in lowest terms. For n*n! see A001563(n).
From Peter Bala, Oct 08 2019: (Start)
r(n) = 3 - 1/(4 - 2/(5 - 3/(6 - ... - (n-1)/(n+2)))).
r(n) = 3 - Sum_{k = 2..n} 1/(k!*k*(k - 1)).
r(n) = (1/(n*n!))*Sum_{k = 0..n} (k+1)!*binomial(n,k) = A001339(n)/A001563(n).
r(n) = r(n-1) - 1/(n!*n*(n-1)) for n >= 2. (End)
r(n) = ((n+1)/n)*hypergeom([-n], [-n-1], 1). - Peter Luschny, Oct 09 2019
EXAMPLE
The positive rationals r(n), n>=1: 3/1, 11/4, 49/18, 87/32, 1631/600, 11743/4320, 31967/11760, ...
MATHEMATICA
r[n_] := ((n + 1)/n) HypergeometricPFQ[{-n}, {-n - 1}, 1];
Table[Numerator[r[n]], {n, 1, 19}] (* Peter Luschny, Oct 09 2019 *)
CROSSREFS
The denominators are in A095823.
Sequence in context: A187249 A105151 A111680 * A025539 A172440 A254536
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jun 11 2004
STATUS
approved