login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124978 Smallest number which has exactly n different partitions as a sum of 4 squares x^2+y^2+z^2+t^2. 4
1, 4, 18, 34, 50, 66, 82, 114, 90, 130, 150, 178, 162, 198, 318, 210, 250, 234, 322, 406, 465, 330, 306, 402, 462, 390, 474, 378, 490, 486, 654, 610, 522, 450, 778, 678, 642, 570, 666, 726, 594, 714, 770, 774, 986, 630, 738, 945, 1035, 850, 1222, 978, 1014, 918 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Is it known that a(n) always exists? - Franklin T. Adams-Watters, Dec 18 2006

A002635(a(n)) = n. - Reinhard Zumkeller, Jul 13 2014

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

Index entries for sequences related to sums of squares

EXAMPLE

a(4)=34 because 34 is smallest number which has 4 partitions 34=4^2+3^2+3^2+0^2 = 4^2+4^2+1^2+1^2 = 5^2+2^2+2^2+1^2 = 5^2+3^2+0^2+0^2

a(3)=18 which has 3 partitions 18=0^2+0^2+3^2+3^2=0^2+1^2+1^2+4^2=1^2+2^2+2^2+3^2.

MATHEMATICA

kmin[n_] := If[n<5, 1, 10n](* empirical, should be lowered in case of doubt *);

a[n_] := a[n] = For[k=kmin[n], True, k++, If[Length[PowersRepresentations[ k, 4, 2]] == n, Return[k]]];

Table[Print[n, " ", a[n]]; a[n], {n, 1, 1000}] (* Jean-Fran├žois Alcover, Mar 11 2019 *)

PROG

(PARI) cnt4sqr(n)={ local(cnt=0, t2) ; for(x=0, floor(sqrt(n)), for(y=x, floor(sqrt(n-x^2)), for(z=y, floor(n-x^2-y^2), t2=n-x^2-y^2-z^2 ; if( t2>=z^2 && issquare(n-x^2-y^2-z^2), cnt++ ; ) ; ) ; ) ; ) ; return(cnt) ; } A124978(n)= { local(a=1) ; while(1, if( cnt4sqr(a)==n, return(a) ; ) ; a++ ; ) ; } { for(n=1, 100, print(n, " ", A124978(n)) ; ) ; } - R. J. Mathar, Nov 29 2006

(Haskell)

import Data.List (elemIndex); import Data.Maybe (fromJust)

a124978 = (+ 1) . fromJust . (`elemIndex` (tail a002635_list))

-- Reinhard Zumkeller, Jul 13 2014

CROSSREFS

Cf. A006431, A094942, A124979-A124983, A000378, A002635, A061262.

Sequence in context: A092116 A083969 A110621 * A031081 A009956 A031303

Adjacent sequences:  A124975 A124976 A124977 * A124979 A124980 A124981

KEYWORD

nonn

AUTHOR

Artur Jasinski, Nov 14 2006

EXTENSIONS

Corrected and extended by R. J. Mathar, Nov 29 2006

More terms from Franklin T. Adams-Watters, Dec 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)