This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124978 Smallest number which has exactly n different partitions as a sum of 4 squares x^2+y^2+z^2+t^2. 4
 1, 4, 18, 34, 50, 66, 82, 114, 90, 130, 150, 178, 162, 198, 318, 210, 250, 234, 322, 406, 465, 330, 306, 402, 462, 390, 474, 378, 490, 486, 654, 610, 522, 450, 778, 678, 642, 570, 666, 726, 594, 714, 770, 774, 986, 630, 738, 945, 1035, 850, 1222, 978, 1014, 918 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Is it known that a(n) always exists? - Franklin T. Adams-Watters, Dec 18 2006 A002635(a(n)) = n. - Reinhard Zumkeller, Jul 13 2014 LINKS T. D. Noe, Table of n, a(n) for n=1..1000 EXAMPLE a(4)=34 because 34 is smallest number which has 4 partitions 34=4^2+3^2+3^2+0^2 = 4^2+4^2+1^2+1^2 = 5^2+2^2+2^2+1^2 = 5^2+3^2+0^2+0^2 a(3)=18 which has 3 partitions 18=0^2+0^2+3^2+3^2=0^2+1^2+1^2+4^2=1^2+2^2+2^2+3^2. MATHEMATICA kmin[n_] := If[n<5, 1, 10n](* empirical, should be lowered in case of doubt *); a[n_] := a[n] = For[k=kmin[n], True, k++, If[Length[PowersRepresentations[ k, 4, 2]] == n, Return[k]]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 1000}] (* Jean-François Alcover, Mar 11 2019 *) PROG (PARI) cnt4sqr(n)={ local(cnt=0, t2) ; for(x=0, floor(sqrt(n)), for(y=x, floor(sqrt(n-x^2)), for(z=y, floor(n-x^2-y^2), t2=n-x^2-y^2-z^2 ; if( t2>=z^2 && issquare(n-x^2-y^2-z^2), cnt++ ; ) ; ) ; ) ; ) ; return(cnt) ; } A124978(n)= { local(a=1) ; while(1, if( cnt4sqr(a)==n, return(a) ; ) ; a++ ; ) ; } { for(n=1, 100, print(n, " ", A124978(n)) ; ) ; } - R. J. Mathar, Nov 29 2006 (Haskell) import Data.List (elemIndex); import Data.Maybe (fromJust) a124978 = (+ 1) . fromJust . (`elemIndex` (tail a002635_list)) -- Reinhard Zumkeller, Jul 13 2014 CROSSREFS Cf. A006431, A094942, A124979-A124983, A000378, A002635, A061262. Sequence in context: A092116 A083969 A110621 * A031081 A009956 A031303 Adjacent sequences:  A124975 A124976 A124977 * A124979 A124980 A124981 KEYWORD nonn AUTHOR Artur Jasinski, Nov 14 2006 EXTENSIONS Corrected and extended by R. J. Mathar, Nov 29 2006 More terms from Franklin T. Adams-Watters, Dec 18 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)