login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281614
Number of examples for Simpson's paradox with data items in [n].
1
0, 0, 0, 0, 4, 232, 1370, 8126, 28252, 86140, 222252, 543520, 1130136, 2331916, 4411418, 7931834, 13716480, 23235304
OFFSET
0,5
COMMENTS
Number of octuples (a,b,c,d,w,x,y,z) in [n]^8 with a*d > b*c, w*z > x*y and (a+w)*(d+z) < (b+x)*(c+y).
All terms are even. If (a,b,c,d,w,x,y,z) is an example then (w,x,y,z,a,b,c,d) is a different example.
EXAMPLE
a(4) = 4: (2,1,4,3,2,4,1,3), (2,4,1,3,2,1,4,3), (3,1,4,2,3,4,1,2), (3,4,1,2,3,1,4,2).
MAPLE
a:= n-> (g-> add(add((h-> `if`(h[1]*h[4] < h[2]*h[3], 2, 0))(
g[i]+g[j]), j=1..i-1), i=2..nops(g)))(select(f->
f[1]*f[4] > f[2]*f[3], [seq(seq(seq(seq([w, x, y, z],
w=1..n), x=1..n), y=1..n), z=1..n)])):
seq(a(n), n=0..8);
CROSSREFS
Cf. A281700.
Sequence in context: A145767 A206352 A024057 * A132551 A333864 A358158
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Jan 25 2017
STATUS
approved