OFFSET
0,5
COMMENTS
Number of octuples (a,b,c,d,w,x,y,z) in [n]^8 with a*d > b*c, w*z > x*y and (a+w)*(d+z) < (b+x)*(c+y).
All terms are even. If (a,b,c,d,w,x,y,z) is an example then (w,x,y,z,a,b,c,d) is a different example.
LINKS
Wikipedia, Simpson's paradox
EXAMPLE
a(4) = 4: (2,1,4,3,2,4,1,3), (2,4,1,3,2,1,4,3), (3,1,4,2,3,4,1,2), (3,4,1,2,3,1,4,2).
MAPLE
a:= n-> (g-> add(add((h-> `if`(h[1]*h[4] < h[2]*h[3], 2, 0))(
g[i]+g[j]), j=1..i-1), i=2..nops(g)))(select(f->
f[1]*f[4] > f[2]*f[3], [seq(seq(seq(seq([w, x, y, z],
w=1..n), x=1..n), y=1..n), z=1..n)])):
seq(a(n), n=0..8);
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Jan 25 2017
STATUS
approved