login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281700
Number of examples for Simpson's paradox with data items in {0,1,...,n}.
1
0, 0, 0, 30, 456, 3396, 14538, 52840, 150116, 380336, 860924, 1839406, 3551856, 6684280, 11834214, 20108168, 33051136, 53176968
OFFSET
0,4
COMMENTS
Number of octuples (a,b,c,d,w,x,y,z) in {0,1,...,n}^8 with a*d > b*c, w*z > x*y and (a+w)*(d+z) < (b+x)*(c+y).
All terms are even. If (a,b,c,d,w,x,y,z) is an example then (w,x,y,z,a,b,c,d) is a different example.
EXAMPLE
a(3) = 30: (1,0,2,1,1,3,0,1), (1,0,3,1,1,2,0,1), (1,0,3,1,1,3,0,1), (1,0,3,1,1,3,0,2), (1,0,3,1,1,3,0,3), (1,0,3,1,2,3,0,1), (1,0,3,1,2,3,1,2), (1,0,3,1,3,3,0,1), (1,0,3,2,1,3,0,1), (1,0,3,2,1,3,0,2), (1,0,3,3,1,3,0,1), (1,2,0,1,1,0,3,1), (1,3,0,1,1,0,2,1), (1,3,0,1,1,0,3,1), (1,3,0,1,1,0,3,2), (1,3,0,1,1,0,3,3), (1,3,0,1,2,0,3,1), (1,3,0,1,2,1,3,2), (1,3,0,1,3,0,3,1), (1,3,0,2,1,0,3,1), (1,3,0,2,1,0,3,2), (1,3,0,3,1,0,3,1), (2,0,3,1,1,3,0,1), (2,0,3,1,2,3,0,1), (2,1,3,2,1,3,0,1), (2,3,0,1,1,0,3,1), (2,3,0,1,2,0,3,1), (2,3,1,2,1,0,3,1), (3,0,3,1,1,3,0,1), (3,3,0,1,1,0,3,1).
MAPLE
a:= n-> (g-> add(add((h-> `if`(h[1]*h[4] < h[2]*h[3], 2, 0))(
g[i]+g[j]), j=1..i-1), i=2..nops(g)))(select(f->
f[1]*f[4] > f[2]*f[3], [seq(seq(seq(seq([w, x, y, z],
w=0..n), x=0..n), y=0..n), z=0..n)])):
seq(a(n), n=0..8);
CROSSREFS
Cf. A281614.
Sequence in context: A035710 A341559 A042746 * A024524 A081736 A161573
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Jan 27 2017
STATUS
approved