login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281698
a(n) = 5*2^(n-1) + 2^(2*n-1) + 6^n + 1.
2
5, 14, 55, 269, 1465, 8369, 48865, 288449, 1713025, 10210049, 60993025, 364899329, 2185181185, 13094268929, 78498422785, 470721937409, 2823257554945, 16935249707009, 101594317062145, 609497180274689, 3656708198498305, 21939149668876289, 131630499945775105
OFFSET
0,1
COMMENTS
Similar to A279511 Sierpinski square-based pyramid but with tetrahedral openings as found in the structure of the Sierpinski octahedron A279512.
LINKS
Wikipedia, Sierpinski triangle, see section on higher dimensional analogs.
FORMULA
From Colin Barker, Jan 28 2017: (Start)
a(n) = 13*a(n-1) - 56*a(n-2) + 92*a(n-3) - 48*a(n-4) for n>3.
G.f.: (5 - 51*x + 153*x^2 - 122*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 6*x)).
(End)
MAPLE
A281698:=n->5*2^(n-1) + 2^(2*n-1) + 6^n + 1: seq(A281698(n), n=0..30); # Wesley Ivan Hurt, Apr 09 2017
MATHEMATICA
Table[5*2^(n - 1) + 2^(2 n - 1) + 6^n + 1, {n, 0, 22}] (* or *)
LinearRecurrence[{13, -56, 92, -48}, {5, 14, 55, 269}, 23] (* or *)
CoefficientList[Series[(5 - 51 x + 153 x^2 - 122 x^3)/((1 - x) (1 - 2 x) (1 - 4 x) (1 - 6 x)), {x, 0, 22}], x] (* Michael De Vlieger, Jan 28 2017 *)
PROG
(PARI) Vec((5 - 51*x + 153*x^2 - 122*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Jan 28 2017
(PARI) a(n) = 5*2^(n-1) + 2^(2*n-1) + 6^n + 1 \\ Charles R Greathouse IV, Jan 29 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Steven Beard, Jan 27 2017
STATUS
approved