login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of examples for Simpson's paradox with data items in {0,1,...,n}.
1

%I #6 Jan 28 2017 13:30:37

%S 0,0,0,30,456,3396,14538,52840,150116,380336,860924,1839406,3551856,

%T 6684280,11834214,20108168,33051136,53176968

%N Number of examples for Simpson's paradox with data items in {0,1,...,n}.

%C Number of octuples (a,b,c,d,w,x,y,z) in {0,1,...,n}^8 with a*d > b*c, w*z > x*y and (a+w)*(d+z) < (b+x)*(c+y).

%C All terms are even. If (a,b,c,d,w,x,y,z) is an example then (w,x,y,z,a,b,c,d) is a different example.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Simpson&#39;s_paradox">Simpson's paradox</a>

%e a(3) = 30: (1,0,2,1,1,3,0,1), (1,0,3,1,1,2,0,1), (1,0,3,1,1,3,0,1), (1,0,3,1,1,3,0,2), (1,0,3,1,1,3,0,3), (1,0,3,1,2,3,0,1), (1,0,3,1,2,3,1,2), (1,0,3,1,3,3,0,1), (1,0,3,2,1,3,0,1), (1,0,3,2,1,3,0,2), (1,0,3,3,1,3,0,1), (1,2,0,1,1,0,3,1), (1,3,0,1,1,0,2,1), (1,3,0,1,1,0,3,1), (1,3,0,1,1,0,3,2), (1,3,0,1,1,0,3,3), (1,3,0,1,2,0,3,1), (1,3,0,1,2,1,3,2), (1,3,0,1,3,0,3,1), (1,3,0,2,1,0,3,1), (1,3,0,2,1,0,3,2), (1,3,0,3,1,0,3,1), (2,0,3,1,1,3,0,1), (2,0,3,1,2,3,0,1), (2,1,3,2,1,3,0,1), (2,3,0,1,1,0,3,1), (2,3,0,1,2,0,3,1), (2,3,1,2,1,0,3,1), (3,0,3,1,1,3,0,1), (3,3,0,1,1,0,3,1).

%p a:= n-> (g-> add(add((h-> `if`(h[1]*h[4] < h[2]*h[3], 2, 0))(

%p g[i]+g[j]), j=1..i-1), i=2..nops(g)))(select(f->

%p f[1]*f[4] > f[2]*f[3], [seq(seq(seq(seq([w, x, y, z],

%p w=0..n), x=0..n), y=0..n), z=0..n)])):

%p seq(a(n), n=0..8);

%Y Cf. A281614.

%K nonn,more

%O 0,4

%A _Alois P. Heinz_, Jan 27 2017