login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281617
Expansion of Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j = p*q, p prime, q prime} (1 - x^j).
2
0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 3, 0, 5, 2, 6, 3, 9, 3, 14, 7, 16, 10, 23, 12, 32, 20, 37, 28, 52, 35, 69, 49, 80, 68, 110, 83, 137, 112, 166, 150, 215, 178, 268, 239, 324, 303, 406, 365, 504, 472, 604, 584, 747, 708, 917, 888, 1089, 1085, 1337, 1311, 1618, 1606, 1916, 1954, 2332, 2334, 2782, 2829, 3300, 3407, 3963
OFFSET
0,9
COMMENTS
Total number of parts in all partitions of n into semiprimes (A001358).
Convolution of A086971 and A101048.
FORMULA
G.f.: Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j = p*q, p prime, q prime} (1 - x^j).
a(n) = Sum_{k>0} k * A344447(n,k). - Alois P. Heinz, May 19 2021
EXAMPLE
a(12) = 5 because we have [6, 6], [4, 4, 4] and 2 + 3 = 5.
MAPLE
h:= proc(n) option remember; `if`(n=0, 0,
`if`(numtheory[bigomega](n)=2, n, h(n-1)))
end:
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0$2],
`if`(i>n, 0, (p-> p+[0, p[1]])(b(n-i, h(min(n-i, i)))))+b(n, h(i-1))))
end:
a:= n-> b(n, h(n))[2]:
seq(a(n), n=0..70); # Alois P. Heinz, May 19 2021
MATHEMATICA
nmax = 70; Rest[CoefficientList[Series[Sum[Floor[PrimeOmega[i]/2] Floor[2/PrimeOmega[i]] x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - Floor[PrimeOmega[j]/2] Floor[2/PrimeOmega[j]] x^j, {j, 2, nmax}], {x, 0, nmax}], x]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 25 2017
STATUS
approved