OFFSET
0,9
COMMENTS
LINKS
FORMULA
G.f.: Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j = p*q, p prime, q prime} (1 - x^j).
a(n) = Sum_{k>0} k * A344447(n,k). - Alois P. Heinz, May 19 2021
EXAMPLE
a(12) = 5 because we have [6, 6], [4, 4, 4] and 2 + 3 = 5.
MAPLE
h:= proc(n) option remember; `if`(n=0, 0,
`if`(numtheory[bigomega](n)=2, n, h(n-1)))
end:
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0$2],
`if`(i>n, 0, (p-> p+[0, p[1]])(b(n-i, h(min(n-i, i)))))+b(n, h(i-1))))
end:
a:= n-> b(n, h(n))[2]:
seq(a(n), n=0..70); # Alois P. Heinz, May 19 2021
MATHEMATICA
nmax = 70; Rest[CoefficientList[Series[Sum[Floor[PrimeOmega[i]/2] Floor[2/PrimeOmega[i]] x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - Floor[PrimeOmega[j]/2] Floor[2/PrimeOmega[j]] x^j, {j, 2, nmax}], {x, 0, nmax}], x]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 25 2017
STATUS
approved