login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054685
Number of partitions of n into distinct prime powers (1 not considered a power).
23
1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 5, 5, 6, 7, 7, 10, 9, 12, 12, 15, 15, 18, 19, 22, 24, 26, 30, 32, 36, 39, 43, 48, 51, 57, 61, 68, 73, 79, 87, 93, 103, 108, 121, 127, 140, 148, 162, 173, 187, 200, 215, 232, 247, 266, 283, 306, 324, 348, 371, 397, 423, 450, 480, 512, 543, 579, 614
OFFSET
0,6
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 (first 1000 terms from T. D. Noe)
FORMULA
G.f.: Product_{p prime} Product_{k >= 1} (1 + x^(p^k)).
MATHEMATICA
CoefficientList[Series[Product[Product[1 +x^(Prime[n]^k), {k, 1, 9}], {n, 1, 25}], {x, 0, 100}], x] (* G. C. Greubel, May 09 2019 *)
PROG
(Haskell)
import Data.MemoCombinators (memo2, integral)
a054685 n = a054685_list !! n
a054685_list = map (p' 2) [0..] where
p' = memo2 integral integral p
p _ 0 = 1
p k m = if m < pp then 0 else p' (k + 1) (m - pp) + p' (k + 1) m
where pp = a000961 k
-- Reinhard Zumkeller, Nov 23 2015
CROSSREFS
Cf. A051613.
Cf. A106244.
Cf. A000961.
Sequence in context: A005044 A266755 A029142 * A286220 A246581 A143619
KEYWORD
nonn
AUTHOR
David W. Wilson, Apr 19 2000
STATUS
approved