login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into distinct prime powers (1 not considered a power).
23

%I #26 Nov 02 2023 12:30:04

%S 1,0,1,1,1,2,1,3,2,4,3,5,5,6,7,7,10,9,12,12,15,15,18,19,22,24,26,30,

%T 32,36,39,43,48,51,57,61,68,73,79,87,93,103,108,121,127,140,148,162,

%U 173,187,200,215,232,247,266,283,306,324,348,371,397,423,450,480,512,543,579,614

%N Number of partitions of n into distinct prime powers (1 not considered a power).

%H Reinhard Zumkeller, <a href="/A054685/b054685.txt">Table of n, a(n) for n = 0..10000</a> (first 1000 terms from T. D. Noe)

%F G.f.: Product_{p prime} Product_{k >= 1} (1 + x^(p^k)).

%t CoefficientList[Series[Product[Product[1 +x^(Prime[n]^k), {k, 1, 9}], {n, 1, 25}], {x, 0, 100}], x] (* _G. C. Greubel_, May 09 2019 *)

%o (Haskell)

%o import Data.MemoCombinators (memo2, integral)

%o a054685 n = a054685_list !! n

%o a054685_list = map (p' 2) [0..] where

%o p' = memo2 integral integral p

%o p _ 0 = 1

%o p k m = if m < pp then 0 else p' (k + 1) (m - pp) + p' (k + 1) m

%o where pp = a000961 k

%o -- _Reinhard Zumkeller_, Nov 23 2015

%Y Cf. A051613.

%Y Cf. A106244.

%Y Cf. A000961.

%K nonn

%O 0,6

%A _David W. Wilson_, Apr 19 2000