login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054687
a(n+1) = 1 + Sum_{k=0..n} binomial(n,k)*a(k)*a(n-k) for n >= 0 with a(0) = 1.
7
1, 2, 5, 19, 99, 653, 5187, 48117, 510271, 6088301, 80716427, 1177130893, 18727404639, 322769897573, 5990916997611, 119139798166245, 2527255556219167, 56960055683893853, 1359299747696197931, 34240584053654816797, 907911436336049691519, 25277557586594907583733, 737276033151104902965963
OFFSET
0,2
LINKS
FORMULA
a(n) ~ n! / r^(n+1), where r = 0.7542714558461742549095127982603266798910769877... is the smallest positive real root of the equation (BesselJ(1, 2) - BesselJ(0, 2))*BesselY(0, 2*exp(r/2)) + BesselJ(0, 2*exp(r/2))*(BesselY(0, 2) - BesselY(1, 2)) = 0. - Vaclav Kotesovec, Mar 02 2014, updated Apr 26 2020
E.g.f. A(x) satisfies A'(x) = exp(x) + A(x)^2 with A(0) = 1. - Petros Hadjicostas, Apr 25 2020
E.g.f.: exp(x/2)*(BesselJ(2, 2)*BesselY(1, 2*exp(x/2)) - BesselJ(1, 2*exp(x/2)) * BesselY(2, 2)) / (BesselJ(2, 2)*BesselY(0, 2*exp(x/2)) - BesselJ(0, 2*exp(x/2)) * BesselY(2, 2)). - Vaclav Kotesovec, Apr 26 2020
EXAMPLE
a(5) = 1 + 1*a(0)*a(4) + 4*a(1)*a(3) + 6*a(2)*a(2) + 4*a(3)*a(1) + 1*a(4)*a(0) = 1 + 1*1*99 + 4*2*19 + 6*5*5 + 4*19*2 + 1*99*1 = 653.
MATHEMATICA
nmax=20; b = ConstantArray[0, nmax+2]; b[[1]]=1; Do[b[[n+2]] = 1 + Sum[Binomial[n, k]*b[[k+1]]*b[[n-k+1]], {k, 0, n}], {n, 0, nmax}]; b (* Vaclav Kotesovec, Mar 02 2014 *)
PROG
(PARI) lista(nn)={my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n]= 1 + sum(k=0, n-2, binomial(n-2, k)*a[k+1]*a[n-k-1])); for(n=1, nn, print1(a[n], ", "))}; \\ Petros Hadjicostas, Jun 11 2020
CROSSREFS
Cf. A052886.
Sequence in context: A052866 A007003 A020117 * A076669 A093502 A009311
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Apr 19 2000
EXTENSIONS
More terms from James A. Sellers, Apr 20 2000
STATUS
approved