OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..429
FORMULA
a(n) ~ n! / r^(n+1), where r = 0.7542714558461742549095127982603266798910769877... is the smallest positive real root of the equation (BesselJ(1, 2) - BesselJ(0, 2))*BesselY(0, 2*exp(r/2)) + BesselJ(0, 2*exp(r/2))*(BesselY(0, 2) - BesselY(1, 2)) = 0. - Vaclav Kotesovec, Mar 02 2014, updated Apr 26 2020
E.g.f. A(x) satisfies A'(x) = exp(x) + A(x)^2 with A(0) = 1. - Petros Hadjicostas, Apr 25 2020
E.g.f.: exp(x/2)*(BesselJ(2, 2)*BesselY(1, 2*exp(x/2)) - BesselJ(1, 2*exp(x/2)) * BesselY(2, 2)) / (BesselJ(2, 2)*BesselY(0, 2*exp(x/2)) - BesselJ(0, 2*exp(x/2)) * BesselY(2, 2)). - Vaclav Kotesovec, Apr 26 2020
EXAMPLE
a(5) = 1 + 1*a(0)*a(4) + 4*a(1)*a(3) + 6*a(2)*a(2) + 4*a(3)*a(1) + 1*a(4)*a(0) = 1 + 1*1*99 + 4*2*19 + 6*5*5 + 4*19*2 + 1*99*1 = 653.
MATHEMATICA
nmax=20; b = ConstantArray[0, nmax+2]; b[[1]]=1; Do[b[[n+2]] = 1 + Sum[Binomial[n, k]*b[[k+1]]*b[[n-k+1]], {k, 0, n}], {n, 0, nmax}]; b (* Vaclav Kotesovec, Mar 02 2014 *)
PROG
(PARI) lista(nn)={my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n]= 1 + sum(k=0, n-2, binomial(n-2, k)*a[k+1]*a[n-k-1])); for(n=1, nn, print1(a[n], ", "))}; \\ Petros Hadjicostas, Jun 11 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Apr 19 2000
EXTENSIONS
More terms from James A. Sellers, Apr 20 2000
STATUS
approved