login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n+1) = 1 + Sum_{k=0..n} binomial(n,k)*a(k)*a(n-k) for n >= 0 with a(0) = 1.
7

%I #35 Jun 12 2020 04:21:32

%S 1,2,5,19,99,653,5187,48117,510271,6088301,80716427,1177130893,

%T 18727404639,322769897573,5990916997611,119139798166245,

%U 2527255556219167,56960055683893853,1359299747696197931,34240584053654816797,907911436336049691519,25277557586594907583733,737276033151104902965963

%N a(n+1) = 1 + Sum_{k=0..n} binomial(n,k)*a(k)*a(n-k) for n >= 0 with a(0) = 1.

%H Seiichi Manyama, <a href="/A054687/b054687.txt">Table of n, a(n) for n = 0..429</a>

%F a(n) ~ n! / r^(n+1), where r = 0.7542714558461742549095127982603266798910769877... is the smallest positive real root of the equation (BesselJ(1, 2) - BesselJ(0, 2))*BesselY(0, 2*exp(r/2)) + BesselJ(0, 2*exp(r/2))*(BesselY(0, 2) - BesselY(1, 2)) = 0. - _Vaclav Kotesovec_, Mar 02 2014, updated Apr 26 2020

%F E.g.f. A(x) satisfies A'(x) = exp(x) + A(x)^2 with A(0) = 1. - _Petros Hadjicostas_, Apr 25 2020

%F E.g.f.: exp(x/2)*(BesselJ(2, 2)*BesselY(1, 2*exp(x/2)) - BesselJ(1, 2*exp(x/2)) * BesselY(2, 2)) / (BesselJ(2, 2)*BesselY(0, 2*exp(x/2)) - BesselJ(0, 2*exp(x/2)) * BesselY(2, 2)). - _Vaclav Kotesovec_, Apr 26 2020

%e a(5) = 1 + 1*a(0)*a(4) + 4*a(1)*a(3) + 6*a(2)*a(2) + 4*a(3)*a(1) + 1*a(4)*a(0) = 1 + 1*1*99 + 4*2*19 + 6*5*5 + 4*19*2 + 1*99*1 = 653.

%t nmax=20; b = ConstantArray[0,nmax+2]; b[[1]]=1; Do[b[[n+2]] = 1 + Sum[Binomial[n,k]*b[[k+1]]*b[[n-k+1]],{k,0,n}],{n,0,nmax}]; b (* _Vaclav Kotesovec_, Mar 02 2014 *)

%o (PARI) lista(nn)={my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n]= 1 + sum(k=0, n-2, binomial(n-2, k)*a[k+1]*a[n-k-1])); for(n=1, nn, print1(a[n], ","))}; \\ _Petros Hadjicostas_, Jun 11 2020

%Y Cf. A052886.

%K easy,nonn

%O 0,2

%A _Leroy Quet_, Apr 19 2000

%E More terms from _James A. Sellers_, Apr 20 2000