login
A054682
a(n) = smallest prime p = prime(k) such that gcd( prime(k+1) - prime(k), prime(k+2) - prime(k+1) ) is a multiple of 2n.
1
3, 89, 47, 1823, 1627, 199, 5939, 5591, 15823, 83117, 259033, 16763, 365851, 1074167, 69593, 1625027, 2541289, 255767, 11772613, 3312227, 247099, 23374859, 25767389, 3565931, 21369059, 15340943, 6314393, 59859131, 101996837, 4911251, 70136597, 166185431, 12012677, 198429983, 247837313, 23346737, 298626077, 1321272031, 43607351, 464208809
OFFSET
1,1
FORMULA
a(n)=Min{x : A057467(x) is a multiple of 2n}
PROG
(PARI) for(n=1, 50, p=2: np=3: while((np-p)%(2*n)||(nextprime(np+2)-np)%(2*n), p=np: np=nextprime(np+2)): print1(p", "))
CROSSREFS
Different from A070018.
Sequence in context: A093748 A156737 A070018 * A106944 A142252 A159508
KEYWORD
nonn
AUTHOR
Jeff Burch, Apr 18 2000
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Nov 09 2000
Corrected and extended by Ralf Stephan, Feb 23 2004
More terms from Olaf Voß, Feb 17 2008
STATUS
approved