The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106244 Number of partitions into distinct prime powers. 14
 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 17, 19, 21, 24, 27, 30, 33, 37, 41, 46, 50, 56, 62, 68, 75, 82, 91, 99, 108, 118, 129, 141, 152, 166, 180, 196, 211, 229, 248, 267, 288, 310, 335, 360, 387, 415, 447, 479, 513, 549, 589, 630, 672, 719, 768, 820, 873, 930 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS A054685(n) < a(n) < A023893(n) for n>2. LINKS T. D. Noe and Reinhard Zumkeller, Table of n, a(n) for n = 0..10000, first 1000 terms from T. D. Noe FORMULA a(n) = A054685(n-1)+A054685(n). - Vladeta Jovovic, Apr 28 2005 G.f.: (1+x)*Product(Product(1+x^(p(k)^j), j=1..infinity),k=1..infinity), where p(k) is the k-th prime (offset 0). - Emeric Deutsch, Aug 27 2007 EXAMPLE a(10) = #{3^2+1,2^3+2,7+3,7+2+1,5+2^2+1,5+3+2,2^2+3+2+1} = 7. MAPLE g:=(1+x)*(product(product(1+x^(ithprime(k)^j), j=1..5), k=1..20)): gser:=series(g, x=0, 68): seq(coeff(gser, x, n), n=1..63); # Emeric Deutsch, Aug 27 2007 MATHEMATICA m = 64; gf = (1+x)*Product[1+x^(Prime[k]^j), {j, 1, 5}, {k, 1, 18}] + O[x]^m; CoefficientList[gf, x] (* Jean-François Alcover, Mar 02 2019, from Maple *) PROG (PARI) lista(m) = {x = t + t*O(t^m); gf = (1+x)*prod(k=1, m, if (isprimepower(k), (1+x^k), 1)); for (n=0, m, print1(polcoeff(gf, n, t), ", ")); } \\ Michel Marcus, Mar 02 2019 (Haskell) import Data.MemoCombinators (memo2, integral) a106244 n = a106244_list !! n a106244_list = map (p' 1) [0..] where    p' = memo2 integral integral p    p _ 0 = 1    p k m = if m < pp then 0 else p' (k + 1) (m - pp) + p' (k + 1) m            where pp = a000961 k -- Reinhard Zumkeller, Nov 24 2015 CROSSREFS Cf. A000586, A000607, A000961. Cf. A062051, A105420, A131996. Cf. A023893, A051613, A054685. Sequence in context: A076678 A029024 A328188 * A029023 A140952 A096911 Adjacent sequences:  A106241 A106242 A106243 * A106245 A106246 A106247 KEYWORD nonn AUTHOR Reinhard Zumkeller, Apr 26 2005 EXTENSIONS Offset corrected and a(0)=1 added by Reinhard Zumkeller, Nov 24 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 28 14:19 EDT 2021. Contains 346335 sequences. (Running on oeis4.)