login
A096911
Number of partitions of n into distinct parts with exactly one even part.
2
0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 18, 20, 23, 26, 30, 34, 38, 43, 49, 55, 61, 69, 77, 86, 95, 106, 118, 131, 144, 160, 177, 195, 214, 236, 260, 285, 312, 342, 375, 410, 447, 488, 534, 581, 632, 688, 749, 813, 882, 957, 1039, 1125, 1217, 1317, 1426
OFFSET
1,5
FORMULA
G.f.: x^2/(1-x^2)*Product(1+x^(2*i+1), i=0..infinity). More generally, g.f. for number of partitions of n into distinct parts with exactly k even parts is x^(k*(k+1))/Product(1-x^(2*i), i=1..k)*Product(1+x^(2*i+1), i=0..infinity).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/6)) / (2^(5/4) * Pi * n^(1/4)). - Vaclav Kotesovec, May 29 2018
MATHEMATICA
Drop[ CoefficientList[ Series[x^2/(1 - x^2) * Product[1 + x^(2*i + 1), {i, 0, 70}], {x, 0, 62}], x], 1] (* Robert G. Wilson v, Aug 21 2004 *)
CROSSREFS
Cf. A000700.
Sequence in context: A106244 A029023 A140952 * A143752 A145933 A300788
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 17 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 21 2004
STATUS
approved