login
A181771
Number of isomorphism classes of connected quandles of order n.
10
1, 0, 1, 1, 3, 2, 5, 3, 8, 1, 9, 10, 11, 0, 7, 9, 15, 12, 17, 10, 9, 0, 21, 42, 34, 0, 65, 13, 27, 24, 29, 17, 11, 0, 15, 73, 35, 0, 13, 33, 39, 26, 41, 9, 45, 0, 45
OFFSET
1,5
COMMENTS
It is not clear whether the empty quandle is connected, so the sequence starts at order 1 instead of 0.
REFERENCES
Hulpke, A. Personal communication, 2014.
Holt, D.; Royle, G. Personal communication, 2014.
LINKS
John J. Cannon and Derek F. Holt, The transitive permutation groups of degree 32, Experiment. Math. 17 (2008), no. 3, 307--314.
A. Hulpke, Constructing transitive permutation groups, J. Symbolic Comput. 39 (2005), 1-30.
J. McCarron, Connected Quandles with Order Equal to Twice an Odd Prime, arXiv preprint arXiv:1210.2150 [math.GR], 2012. - From N. J. A. Sloane, Dec 31 2012
Sam Nelson, Quandles and Racks.
Leandro Vendramin, On the classification of quandles of low order, arXiv:1105.5341 [math.GT], 2011-2012.
Leandro Vendramin and Matías Graña, Rig, a GAP package for racks and quandles.
PROG
(GAP) # (using the Rig package)
LoadPackage("rig");
for n in [1..47] do Display(NrSmallQuandles(n)); od;
# Leandro Vendramin, Sep 14 2014
CROSSREFS
Sequence in context: A086670 A075888 A075889 * A238628 A045766 A281668
KEYWORD
nonn,hard,more
EXTENSIONS
Ninth term corrected by James McCarron, Dec 05 2010
More terms from Leandro Vendramin, Sep 14 2014
STATUS
approved