login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075888
Difference of successive primes squared divided by 24, (prime(n+1)^2-prime(n)^2)/24.
7
1, 3, 2, 5, 3, 7, 13, 5, 17, 13, 7, 15, 25, 28, 10, 32, 23, 12, 38, 27, 43, 62, 33, 17, 35, 18, 37, 140, 43, 67, 23, 120, 25, 77, 80, 55, 85, 88, 30, 155, 32, 65, 33, 205, 217, 75, 38, 77, 118, 40, 205, 127, 130, 133, 45, 137, 93, 47, 240, 350, 103, 52, 105, 378, 167, 285
OFFSET
3,2
COMMENTS
For n>=3, prime(n+1)^2-prime(n)^2 is always divisible by 24.
It follows from the previous comment that for n>=3, prime(n)= sqrt(5^2 + k*24) where integer k>= 0 Then it follows from above that for n>=3, ((prime(n))^2 - 1)/24 always gives integral values - see A024702. [From Alexander R. Povolotsky, Sep 20 2008]
LINKS
FORMULA
a(n) = (prime(n+1)^2 - prime(n)^2)/24.
EXAMPLE
a(4)=3 because (prime(5)^2-prime(4)^2)/24=(11^2-7^2)/24=3.
MATHEMATICA
(#[[2]]-#[[1]])/24&/@(Partition[Prime[Range[3, 70]], 2, 1]^2) (* Harvey P. Dale, Apr 06 2013 *)
Table[(Prime[n + 1]^2 - Prime[n]^2)/24, {n, 3, 50}] (* G. C. Greubel, Feb 18 2017 *)
PROG
(PARI) j=[]; for(n=3, 300, if(((floor((((prime(n+1))^2)-((prime(n))^2))/24))==(ceil(((((prime(n+1))^2)-((prime(n))^2))/24)))), j=concat(j, ((((prime(n+1))^2) - ((prime(n))^2))/24)), j=concat(j, -1))); j \\ Alexander R. Povolotsky, Sep 08 2008
(Magma) [(NthPrime(n+1)^2 - NthPrime(n)^2)/24: n in [3..100]]; // Vincenzo Librandi, Mar 07 2015
CROSSREFS
Cf. A024702.
Sequence in context: A111618 A107128 A086670 * A075889 A181771 A238628
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Oct 17 2002
STATUS
approved