login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075885
a(n) = 1 + n + n*[n/2] + n*[n/2]*[n/3] + n*[n/2]*[n/3]*[n/4] +... where [x]=floor(x).
8
1, 2, 5, 10, 29, 46, 169, 239, 745, 1450, 4111, 5182, 27157, 33164, 84001, 186496, 610065, 713474, 3061009, 3526553, 13783421, 27380452, 63264389, 71240523, 444872761, 620729126, 1400231613, 2615011102, 9094701085, 10008828958
OFFSET
0,2
COMMENTS
Conjecture: limit a(n)^(1/n) = L where L = 2.200161058099... is the geometric mean of Luroth expansions, where log(L) = Sum_{n>=1} log(n)/(n*(n+1)) = 0.7885305659115... (cf. A085361).
Compare the definition of a(n) to the exponential series:
exp(n) = 1 + n + n*(n/2) + n*(n/2)*(n/3) + n*(n/2)*(n/3)*(n/4) +...
LINKS
Eric Weisstein's World of Mathematics, Alladi-Grinstead Constant
FORMULA
a(n) = 1 + Sum_{m=1..n} Product_{k=1..m} floor(n/k).
EXAMPLE
a(5) = 1 + 5 + 5[5/2] + 5[5/2][5/3] + 5[5/2][5/3][5/4] + 5[5/2][5/3][5/4][5/5] = 1 + 5 + 5*2 + 5*2*1 + 5*2*1*1 + 5*2*1*1*1 = 46.
PROG
(PARI) {a(n)=1+sum(m=1, n, prod(k=1, m, floor(n/k)))}
for(n=0, 60, print1(a(n), ", "))
(PARI) a(n)=my(k=1); 1+sum(m=1, n, k*=n\m) \\ Charles R Greathouse IV, Feb 20 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Oct 16 2002
STATUS
approved