The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075884 Image of n at the second step of the 3x+1 algorithm. 10
 2, 4, 5, 1, 8, 10, 11, 2, 14, 16, 17, 3, 20, 22, 23, 4, 26, 28, 29, 5, 32, 34, 35, 6, 38, 40, 41, 7, 44, 46, 47, 8, 50, 52, 53, 9, 56, 58, 59, 10, 62, 64, 65, 11, 68, 70, 71, 12, 74, 76, 77, 13, 80, 82, 83, 14, 86, 88, 89, 15, 92, 94, 95, 16, 98, 100, 101, 17, 104, 106, 107 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also known as the Collatz Problem, Syracuse Algorithm or Hailstone Problem. Let syr(m,n) be the image of n at the m-th step. for m=2, k>=0 we get: syr(2,4k)=k, syr(2,4k+1)=6k+2, syr(2,4k+2)=6k+4, syr(2,4k+3)=6k+5. REFERENCES David Wells, Penguin Dictionary of Curious and Interesting Numbers LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Collatz Problem Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1). FORMULA G.f.: x*(x^6 +2*x^5 +4*x^4 +x^3 +5*x^2 +4*x +2)/(1-x^4)^2. a(n) = (6*n +(55*n+4)*m -6*(5*n-2)*m^2 +(5*n-4)*m^3)/24, m=(n mod 4). - Zak Seidov, Sep 14 2006 From Federico Provvedi, Oct 17 2021: (Start) Dirichlet g.f.: ((3*4^s - 10)*zeta(s-1) + (4^s + 2^s - 2)*zeta(s))/2^(2s+1). a(n) = (n*(19-5*i^(2*n)) - (5*n+4)*(i^n + (-i)^n) + 8)/16, where i*i = -1. (End) EXAMPLE 1->4->2, 2->1->4, 3->10->5, 4->2->1, ... MATHEMATICA Table[Nest[If[EvenQ[#], #/2, 3#+1]&, n, 2], {n, 80}] (* Harvey P. Dale, Nov 15 2012 *) PROG (PARI) x='x+O('x^80); Vec(x*(x^6+2*x^5+4*x^4+x^3+5*x^2+4*x+2)/(1-x^4)^2) \\ G. C. Greubel, Oct 16 2018 (Magma) m:=80; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(x^6+2*x^5+4*x^4+x^3+5*x^2+4*x+2)/(1-x^4)^2)); CROSSREFS Cf. A006370 (the sequence at step 1), A076536 (at step 3). Column k=2 of A347270. Sequence in context: A242613 A196548 A274316 * A030750 A286147 A340755 Adjacent sequences:  A075881 A075882 A075883 * A075885 A075886 A075887 KEYWORD easy,nonn AUTHOR Bruce Corrigan (scentman(AT)myfamily.com), Oct 16 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 15:58 EDT 2022. Contains 356943 sequences. (Running on oeis4.)