OFFSET
0,3
COMMENTS
Radius of convergence of g.f. A(x) is near 0.54783..., with A(1/2) = 7.2672875151872...
Compare the definition of a(n) to the trivial binomial sum:
2^(n-1) = 1 + (n-1) + (n-1)*(n/2-1) + (n-1)*(n/2-1)*(n/3-1) + (n-1)*(n/2-1)*(n/3-1)*(n/4-1) +...
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..500
FORMULA
a(n) = 1 + Sum_{k=1..[n/2]} Product_{j=1..k} floor( (n-j) / j ).
Equals row sums of irregular triangle A207645.
EXAMPLE
a(2) = 1 + 1 = 2; a(3) = 1 + 2 = 3;
a(4) = 1 + 3 + 3*[4/2-1] = 7;
a(5) = 1 + 4 + 4*[5/2-1] = 9;
a(6) = 1 + 5 + 5*[6/2-1] + 5*[6/2-1]*[6/3-1] = 26;
a(7) = 1 + 6 + 6*[7/2-1] + 6*[7/2-1]*[7/3-1] = 31;
a(8) = 1 + 7 + 7*[8/2-1] + 7*[8/2-1]*[8/3-1] + 7*[8/2-1]*[8/3-1]*[8/4-1] = 71; ...
MATHEMATICA
a[n_] := 1 + Sum[ Product[ Floor[(n-j)/j], {j, 1, k}], {k, 1, n/2}]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Mar 06 2013 *)
PROG
(PARI) {a(n)=1+sum(k=1, n, prod(j=1, k, floor(n/j-1)))}
for(n=0, 50, print1(a(n), ", "))
(PARI) a(n)=my(t=1); 1+sum(k=1, n, t*=n\k-1) \\ Charles R Greathouse IV, Feb 20 2012
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Paul D. Hanna, Feb 19 2012
STATUS
approved