login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207643
a(n) = 1 + (n-1) + (n-1)*[n/2-1] + (n-1)*[n/2-1]*[n/3-1] + (n-1)*[n/2-1]*[n/3-1]*[n/4-1] +... for n>0 with a(0)=1, where [x] = floor(x).
6
1, 1, 2, 3, 7, 9, 26, 31, 71, 129, 262, 291, 1222, 1333, 2198, 5139, 11881, 12673, 39594, 41923, 117326, 251841, 354292, 371163, 1870453, 2598577, 3456926, 7103955, 16665859, 17283113, 72923314, 75437911, 165990152, 335534913, 422310802, 695765699, 3589651696
OFFSET
0,3
COMMENTS
Radius of convergence of g.f. A(x) is near 0.54783..., with A(1/2) = 7.2672875151872...
Compare the definition of a(n) to the trivial binomial sum:
2^(n-1) = 1 + (n-1) + (n-1)*(n/2-1) + (n-1)*(n/2-1)*(n/3-1) + (n-1)*(n/2-1)*(n/3-1)*(n/4-1) +...
LINKS
FORMULA
a(n) = 1 + Sum_{k=1..[n/2]} Product_{j=1..k} floor( (n-j) / j ).
Equals row sums of irregular triangle A207645.
EXAMPLE
a(2) = 1 + 1 = 2; a(3) = 1 + 2 = 3;
a(4) = 1 + 3 + 3*[4/2-1] = 7;
a(5) = 1 + 4 + 4*[5/2-1] = 9;
a(6) = 1 + 5 + 5*[6/2-1] + 5*[6/2-1]*[6/3-1] = 26;
a(7) = 1 + 6 + 6*[7/2-1] + 6*[7/2-1]*[7/3-1] = 31;
a(8) = 1 + 7 + 7*[8/2-1] + 7*[8/2-1]*[8/3-1] + 7*[8/2-1]*[8/3-1]*[8/4-1] = 71; ...
MATHEMATICA
a[n_] := 1 + Sum[ Product[ Floor[(n-j)/j], {j, 1, k}], {k, 1, n/2}]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Mar 06 2013 *)
PROG
(PARI) {a(n)=1+sum(k=1, n, prod(j=1, k, floor(n/j-1)))}
for(n=0, 50, print1(a(n), ", "))
(PARI) a(n)=my(t=1); 1+sum(k=1, n, t*=n\k-1) \\ Charles R Greathouse IV, Feb 20 2012
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Paul D. Hanna, Feb 19 2012
STATUS
approved