login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299437
G.f.: exp( Sum_{n>=1} A020696(n)/2 * x^n/n ), where A020696(n) = Product_{d|n} (d + 1).
2
1, 1, 2, 3, 7, 9, 27, 33, 73, 100, 203, 269, 987, 1163, 2283, 3234, 6706, 8812, 21455, 27211, 55718, 76055, 147048, 196483, 533149, 659549, 1262531, 1759301, 3462333, 4593487, 10261739, 13213278, 25944342, 35397849, 66694451, 89412873, 209286231, 266115126, 499426529, 689936238, 1311854563, 1750578063, 3676669661, 4787587399, 9114353938, 12427479022, 22925519170
OFFSET
0,3
COMMENTS
Self-convolution equals A299436.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 7*x^4 + 9*x^5 + 27*x^6 + 33*x^7 + 73*x^8 + 100*x^9 + 203*x^10 + 269*x^11 + 987*x^12 + 1163*x^13 + 2283*x^14 + ...
such that
log(A(x)) = x + 3*x^2/2 + 4*x^3/3 + 15*x^4/4 + 6*x^5/5 + 84*x^6/6 + 8*x^7/7 + 135*x^8/8 + 40*x^9/9 + 198*x^10/10 + 12*x^11/11 + 5460*x^12/12 + 14*x^13/13 + 360*x^14/14 + 384*x^15/15 + ... + A020696(n)/2*x^n/n + ...
PROG
(PARI) A020696(n) = {d = divisors(n); return (prod(i=1, #d, d[i]+1)); } \\ after Michel Marcus
{a(n) = my(A = exp( sum(m=1, n, A020696(m)/2*x^m/m ) +x*O(x^n) )); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A299436 (A(x)^2), A020696.
Sequence in context: A333517 A207643 A205488 * A255393 A248037 A123481
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 12 2018
STATUS
approved