login
A299440
Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, if prime(k) divides a(n) then k divides a(n+1) (where prime(k) denotes the k-th prime).
1
1, 2, 3, 4, 5, 6, 8, 7, 12, 10, 9, 14, 16, 11, 15, 18, 20, 21, 24, 22, 25, 27, 26, 30, 36, 28, 32, 13, 42, 40, 33, 50, 39, 48, 34, 35, 60, 54, 38, 56, 44, 45, 66, 70, 72, 46, 63, 52, 78, 84, 64, 17, 49, 68, 77, 80, 51, 98, 76, 88, 55, 75, 90, 96, 58, 100, 57
OFFSET
1,2
COMMENTS
In other words, for any n > 0, A290103(a(n)) divides a(n+1).
See also A299441 (where we consider only least prime factors) and A299442 (where we consider only greatest prime factors).
LINKS
EXAMPLE
The first terms, alongside A290103(a(n)), are:
n a(n) A290103(a(n))
-- ---- -------------
1 1 1
2 2 1
3 3 2
4 4 1
5 5 3
6 6 2
7 8 1
8 7 4
9 12 2
10 10 3
11 9 2
12 14 4
13 16 1
14 11 5
15 15 6
16 18 2
17 20 3
18 21 4
19 24 2
20 22 5
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Feb 10 2018
STATUS
approved