login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} A020696(n)/2 * x^n/n ), where A020696(n) = Product_{d|n} (d + 1).
2

%I #11 Feb 17 2018 12:28:35

%S 1,1,2,3,7,9,27,33,73,100,203,269,987,1163,2283,3234,6706,8812,21455,

%T 27211,55718,76055,147048,196483,533149,659549,1262531,1759301,

%U 3462333,4593487,10261739,13213278,25944342,35397849,66694451,89412873,209286231,266115126,499426529,689936238,1311854563,1750578063,3676669661,4787587399,9114353938,12427479022,22925519170

%N G.f.: exp( Sum_{n>=1} A020696(n)/2 * x^n/n ), where A020696(n) = Product_{d|n} (d + 1).

%C Self-convolution equals A299436.

%H Paul D. Hanna, <a href="/A299437/b299437.txt">Table of n, a(n) for n = 0..1000</a>

%e G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 7*x^4 + 9*x^5 + 27*x^6 + 33*x^7 + 73*x^8 + 100*x^9 + 203*x^10 + 269*x^11 + 987*x^12 + 1163*x^13 + 2283*x^14 + ...

%e such that

%e log(A(x)) = x + 3*x^2/2 + 4*x^3/3 + 15*x^4/4 + 6*x^5/5 + 84*x^6/6 + 8*x^7/7 + 135*x^8/8 + 40*x^9/9 + 198*x^10/10 + 12*x^11/11 + 5460*x^12/12 + 14*x^13/13 + 360*x^14/14 + 384*x^15/15 + ... + A020696(n)/2*x^n/n + ...

%o (PARI) A020696(n) = {d = divisors(n); return (prod(i=1, #d, d[i]+1)); } \\ after _Michel Marcus_

%o {a(n) = my(A = exp( sum(m=1,n, A020696(m)/2*x^m/m ) +x*O(x^n) )); polcoeff(A,n)}

%o for(n=0,40,print1(a(n),", "))

%Y Cf. A299436 (A(x)^2), A020696.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 12 2018