login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207642
Expansion of g.f.: Sum_{n>=0} x^n * Product_{k=0..n-1} (1 + x^(n+k)).
4
1, 1, 2, 1, 2, 2, 2, 3, 3, 2, 4, 4, 4, 4, 5, 6, 6, 6, 6, 8, 9, 8, 10, 10, 10, 12, 14, 14, 14, 15, 16, 19, 20, 20, 22, 24, 24, 26, 28, 30, 34, 34, 35, 38, 40, 42, 46, 50, 50, 54, 58, 60, 63, 66, 70, 76, 80, 84, 88, 92, 96, 102, 108, 112, 120, 126, 131, 140, 146, 151
OFFSET
0,3
COMMENTS
Conjecture: a(n) is the number of partitions p of n into distinct parts such that max(p) <= 1 + 2*min(p), for n >= 1 (as in the Mathematica program at A241061). - Clark Kimberling, Apr 16 2014
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Paul D. Hanna)
FORMULA
G.f.: Sum_{n>=0} x^(n*(3*n+1)/2) / ( Product_{k=0..n} 1 - x^(n+k+1) ). - Paul D. Hanna, Oct 14 2020
a(n) ~ c * exp(r*sqrt(n)) / sqrt(n), where r = 0.926140105877... = 2*sqrt((3/2)*log(z)^2 - polylog(2, 1-z) + polylog(2, 1-z^2)), where z = (-1 + (44 - 3*sqrt(177))^(1/3) + (44 + 3*sqrt(177))^(1/3))/6 = 0.82948354095849703967... is the real root of the equation z^3*(1 - z)/(1 - z^2)^2 = 1 and c = 0.57862299312... - Vaclav Kotesovec, Jun 29 2019, updated Oct 09 2024
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 2*x^9 + 4*x^10 + 4*x^11 + 4*x^12 + 4*x^13 + 5*x^14 + 6*x^15 + 6*x^16 + 6*x^17 + ...
such that, by definition,
A(x) = 1 + x*(1 + x) + x^2*(1 + x^2)*(1 + x^3) + x^3*(1 + x^3)*(1 + x^4)*(1 + x^5) + x^4*(1 + x^4)*(1 + x^5)*(1 + x^6)*(1 + x^7) + x^5*(1 + x^5)*(1 + x^6)*(1 + x^7)*(1 + x^8)*(1 + x^9) + ... + x^n*Product_{k=0..n-1} (1 + x^(n+k)) + ...
Also
A(x) = 1/(1 - x) + x^2/((1 - x^2)*(1 - x^3)) + x^7/((1 - x^3)*(1 - x^4)*(1 - x^5)) + x^15/((1 - x^4)*(1 - x^5)*(1 - x^6)*(1 - x^7)) + x^26/((1 - x^5)*(1 - x^6)*(1 - x^7)*(1 - x^8)*(1 - x^9)) + ... + x^(n*(3*n+1)/2)/(Product_{k=0..n} 1 - x^(n+k+1)) + ...
MATHEMATICA
With[{m = 80}, CoefficientList[Series[Sum[x^n*Product[1+x^(n+j), {j, 0, n-1}], {n, 0, m}], {x, 0, m}], x]] (* G. C. Greubel, Jan 12 2019 *)
nmax = 100; pk = x + x^2; s = 1 + pk; Do[pk = Normal[Series[pk * x*(1 + x^(2*k - 2))*(1 + x^(2*k - 1))/(1 + x^(k - 1)), {x, 0, nmax}]]; s = s + pk, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Jun 18 2019 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=0, m-1, 1+x^(m+k) +x*O(x^n))), n)}
for(n=0, 80, print1(a(n), ", "))
(Magma) m:=80; R<x>:=PowerSeriesRing(Integers(), m); [1] cat Coefficients(R!( (&+[x^n*(&*[1+x^(n+j): j in [0..n-1]]) : n in [1..m]]) )); // G. C. Greubel, Jan 12 2019
(Sage)
R = PowerSeriesRing(ZZ, 'x')
m = 80
x = R.gen().O(m)
s = sum(x^n*prod(1+x^(n+j) for j in (0..n-1)) for n in (0..m))
s.coefficients() # G. C. Greubel, Jan 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 19 2012
STATUS
approved