login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228594
Triangle T(n,k,r,u) read by rows: number of partitions of an n X k X r rectangular cuboid on a cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors, considering only the number of parts; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,63
COMMENTS
Row lengths are specified in A228726.
LINKS
Christopher Hunt Gribble, Rows 1..34 flattened
Christopher Hunt Gribble, C++ program
EXAMPLE
T(4,4,4,8) = 2 because the 4 X 4 X 4 rectangular cuboid (in this case a cube) has 2 partitions in which there are 8 nodes unconnected to any of their neighbors. The partitions are (8 2 X 2 X 2 cubes) and (37 1 X 1 X 1 cubes and 1 3 X 3 X 3 cube). The partitions and isolated nodes can be illustrated by expanding into 2 dimensions:
._______. ._______. ._______. ._______. ._______.
| | | | . | . | | | | | . | . | | | |
|___|___| |___|___| |___|___| |___|___| |___|___|
| | | | . | . | | | | | . | . | | | |
|___|___| |___|___| |___|___| |___|___| |___|___|
._______. ._______. ._______. ._______. ._______.
| |_| | . . |_| | . . |_| | |_| |_|_|_|_|
| |_| | . . |_| | . . |_| | |_| |_|_|_|_|
|_____|_| |_____|_| |_____|_| |_____|_| |_|_|_|_|
|_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|
.
The irregular triangle begins:
u 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
n k r
1,1,1 1
2,1,1 1
2,2,1 1
2,2,2 1 1
3,1,1 1
3,2,1 1
3,2,2 1 1
3,3,1 1
3,3,2 1 1
3,3,3 1 1 0 0 0 0 0 0 1
4,1,1 1
4,2,1 1
4,2,2 1 1 1
4,3,1 1
4,3,2 1 1 1
4,3,3 1 1 1 0 0 0 0 0 1
4,4,1 1
4,4,2 1 1 1 1 1
4,4,3 1 1 1 1 1 0 0 0 1
4,4,4 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 0 ...
5,1,1 1
5,2,1 1
5,2,2 1 1 1
5,3,1 1
5,3,2 1 1 1
5,3,3 1 1 1 0 0 0 0 0 1 1
5,4,1 1
5,4,2 1 1 1 1 1
5,4,3 1 1 1 1 1 0 0 0 1 1 1
5,4,4 1 1 1 1 1 1 1 1 2 1 1 1 1 0 0 0 0 ...
5,5,1 1
5,5,2 1 1 1 1 1
5,5,3 1 1 1 1 1 0 0 0 1 1 1 1
5,5,4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 0 0 ...
CROSSREFS
Row sums = A228202(n,k,r).
Cf. A225542.
Sequence in context: A335462 A353349 A349399 * A281669 A331845 A014083
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved