OFFSET
1,1
REFERENCES
D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
R. Balakrishnan, S. F. Raj, The Wiener number of powers of the Mycielskian, Discussiones Math. Graph Theory, 30, 2010, 489-498 (see Theorem 2.1).
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 96*n^2 + 16*n + 29.
G.f.: x*(141+22*x+29*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Dec 08 2016
MAPLE
a := proc (n) options operator, arrow: 96*n^2+16*n+29 end proc: seq(a(n), n = 1 .. 35);
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {141, 445, 941}, 100] (* or *) Table[96*n^2 + 16*n + 29 , {n, 1, 100}] (* G. C. Greubel, Dec 08 2016 *)
PROG
(PARI) Vec(x*(141+22*x+29*x^2)/(1-x)^3 + O(x^50)) \\ G. C. Greubel, Dec 08 2016
(Magma) [96*n^2+16*n+29: n in [1..40]]; // Vincenzo Librandi, Dec 09 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 27 2013
STATUS
approved