login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077545 Primes of the form floor(k*e). 6
2, 5, 13, 19, 29, 43, 59, 67, 73, 89, 97, 103, 127, 149, 157, 163, 173, 179, 233, 239, 241, 263, 269, 271, 277, 293, 307, 331, 337, 347, 353, 383, 421, 443, 467, 521, 557, 587, 617, 619, 641, 701, 709, 733, 739, 761, 769, 823, 829, 839, 853, 883, 907, 929, 937 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes not in A077545 are in A184856, since {floor(k*e)} and {floor(j*e/(e-1)} are complementary Beatty sequences (A022854 and A054385).

LINKS

Table of n, a(n) for n=1..55.

MATHEMATICA

r=E; s=r/(r-1);

a[n_]:=Floor[n*r];

b[n_]:=Floor[n*s];

Table[a[n], {n, 1, 120}]  (* A022843 *)

t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1

t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2

t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3

t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4, b[n]]], {n, 1, 600}]; t4

t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5, n]], {n, 1, 600}]; t5

t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6, n]], {n, 1, 300}]; t6

(* List t1 matches A077545; list t2 matches A062409;

lists t3-t6 match A184855-A184858. *)

CROSSREFS

Cf. A062409, A184855, A184856, A184587, A184858.

Sequence in context: A038950 A019390 A073770 * A069943 A273462 A094158

Adjacent sequences:  A077542 A077543 A077544 * A077546 A077547 A077548

KEYWORD

base,nonn

AUTHOR

Amarnath Murthy, Nov 09 2002

EXTENSIONS

More terms from Sascha Kurz, Jan 12 2003

Mathematica code and crossreferences by Clark Kimberling, Jan 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 22:38 EDT 2021. Contains 347609 sequences. (Running on oeis4.)