login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202365
G.f.: Sum_{n>=0} (n-x)^n * x^n / (1 + n*x - x^2)^n.
3
1, 1, 2, 10, 54, 336, 2400, 19440, 176400, 1774080, 19595520, 235872000, 3073593600, 43110144000, 647610163200, 10374216652800, 176536039680000, 3180264062976000, 60466862776320000, 1210048630382592000, 25423825985445888000, 559567461880627200000, 12874917427270778880000
OFFSET
0,3
FORMULA
a(n) = (n-1)*(n+2)/2 * (n-1)!, for n>1 with a(0)=a(1)=1.
E.g.f.: 1/2 + 1/(2*(1-x)^2) + x + log(1-x).
E.g.f.: Sum_{n>=0} a(n+1)*x^n/n! = 1/(1-x)^3 - x/(1-x).
From Amiram Eldar, Dec 23 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi^2/9 + 43/27.
Sum_{n>=0} (-1)^n/a(n) = Pi^2/18 - 4*log(2)/9 + 5/27. (End)
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 54*x^4 + 336*x^5 + 2400*x^6 +...
where
A(x) = 1 + (1-x)*x/(1+x-x^2) + (2-x)^2*x^2/(1+2*x-x^2)^2 + (3-x)^3*x^3/(1+3*x-x^2)^3 + (4-x)^4*x^4/(1+4*x-x^2)^4 + (5-x)^5*x^5/(1+5*x-x^2)^5 +...
MATHEMATICA
a[n_] := Switch[n, 0|1, 1, _, (n-1)*(n+2)/2*(n-1)!];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 24 2022 *)
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, (m-x)^m*x^m/(1+m*x-x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=if(n==0||n==1, 1, (n-1)*(n+2)/2 * (n-1)!)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) + x + log(1-x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 09 2013
STATUS
approved