OFFSET
2,2
LINKS
Alois P. Heinz, Rows n = 2..142, flattened
FORMULA
E.g.f.: x^2/2 * (1/(1-x)^2)* (1/(1-y*x)).
EXAMPLE
T(3,1) = 3 because from the permutations (given in one line notation): (2,3,1), (3,1,2), (3,2,1) we have respectively 3 inversion pairs (1,2), (2,3) and (1,3) which are all separated by 1 element.
Triangle T(n,k) begins:
1;
6, 3;
36, 24, 12;
240, 180, 120, 60;
1800, 1440, 1080, 720, 360;
15120, 12600, 10080, 7560, 5040, 2520;
141120, 120960, 100800, 80640, 60480, 40320, 20160;
...
MATHEMATICA
nn=10; Range[0, nn]!CoefficientList[Series[x^2/2/(1-x)^2/(1-y x), {x, 0, nn}], {x, y}]//Grid
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 09 2013
STATUS
approved