The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187746 G.f.: Sum_{n>=0} (2*n+x)^n * x^n / (1 + 2*n*x + x^2)^n. 3
 1, 2, 13, 100, 984, 11712, 163200, 2603520, 46771200, 934133760, 20530298880, 492355584000, 12793813401600, 358063276032000, 10737974299852800, 343513154086502400, 11676590580695040000, 420271561157640192000, 15967576932074127360000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..18. FORMULA a(n) = (2*n^2+2*n+1) * 2^(n-2) * (n-1)! for n>1 with a(0)=1, a(1)=2. E.g.f.: 1/2 + 1/(2*(1-2*x)^2) - x/2 - log(1-2*x)/4. E.g.f.: Sum_{n>=0} a(n+1)*x^n/n! = 2/(1-2*x)^3 + x/(1-2*x). EXAMPLE G.f.: A(x) = 1 + 2*x + 13*x^2 + 100*x^3 + 984*x^4 + 11712*x^5 +... where A(x) = 1 + (2+x)*x/(1+2*x+x^2) + (4+x)^2*x^2/(1+4*x+x^2)^2 + (6+x)^3*x^3/(1+6*x+x^2)^3 + (8+x)^4*x^4/(1+8*x+x^2)^4 + (10+x)^5*x^5/(1+10*x+x^2)^5 +... PROG (PARI) {a(n)=polcoeff( sum(m=0, n, (2*m+x)^m*x^m/(1+2*m*x+x^2 +x*O(x^n))^m), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=if(n==0, 1, if(n==1, 2, (2*n^2+2*n+1)*2^(n-2)*(n-1)!))} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=n!*polcoeff(1/2 + 1/(2*(1-2*x)^2) - x/2 - log(1-2*x +x*O(x^n))/4, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A187742, A187735. Sequence in context: A365155 A123619 A341954 * A030519 A141116 A330349 Adjacent sequences: A187743 A187744 A187745 * A187747 A187748 A187749 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 03 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 00:17 EDT 2024. Contains 373492 sequences. (Running on oeis4.)