

A187744


Numbers whose digital sum is a triangular number.


1



0, 1, 3, 6, 10, 12, 15, 19, 21, 24, 28, 30, 33, 37, 42, 46, 51, 55, 60, 64, 69, 73, 78, 82, 87, 91, 96, 100, 102, 105, 109, 111, 114, 118, 120, 123, 127, 132, 136, 141, 145, 150, 154, 159, 163, 168, 172, 177, 181, 186, 190, 195, 201, 204, 208, 210, 213, 217
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Every term with some permutations can become another term of this sequence.
The subsequence of primes begins: 3, 19, 37, 73, 91, 127...
The subsequence of triangular numbers begins: 1, 3, 6, 10, 15, 21, 28, 55...


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000


FORMULA

If decimal expansion of n is x1 x2 ... xk then x1 + x2 + ... xk = T.
A010054(A007953(a(n))) = 1.  Reinhard Zumkeller, Jan 03 2013


MATHEMATICA

TriangularQ[n_] := IntegerQ[Sqrt[1 + 8 n]]; Select[Range[0, 300], TriangularQ[Total[IntegerDigits[#]]] &] (* T. D. Noe, Jan 03 2013 *)


PROG

(Haskell)
a187744 n = a187744_list !! (n1)
a187744_list = filter ((== 1) . a010054 . a007953) [0..]
 Reinhard Zumkeller, Jan 03 2013


CROSSREFS

Cf. A000217, A007960, A000027.
Sequence in context: A316325 A114981 A319452 * A007960 A280243 A032732
Adjacent sequences: A187741 A187742 A187743 * A187745 A187746 A187747


KEYWORD

nonn,base


AUTHOR

Dario Piazzalunga, Jan 03 2013


STATUS

approved



