login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187748
Determinant of the n X n matrix m_(i,j) = gcd(2^i-1, 2^j-1).
0
1, 2, 12, 144, 4320, 233280, 29393280, 7054387200, 3555411148800, 3519857037312000, 7201627498340352000, 28950542543328215040000, 237104943429858081177600000, 3853903750508913251460710400000, 126138269754156730720309051392000000, 8234306249551351381421774874869760000000, 1079270520128695625562952032849179443200000000, 282311265573183686952254740944556962034483200000000
OFFSET
1,2
FORMULA
a(n+1)/a(n) = A027375(n+1).
a(n) = (1/2)*Product_{k=1..n} Sum_{d|k} moebius(d)*2^(k/d).
a(n) ~ c * 2^(n*(n+1)/2), where c = 0.09412540696949274854160062245002977344042957885767746756023904566838799439... - Vaclav Kotesovec, Apr 19 2024
MATHEMATICA
b[n_] := DivisorSum[n, MoebiusMu[n/#]*2^#& ]; a[n_] := a[n] = If[n == 1, 1, a[n-1]*b[n]]; Array[a, 18] (* Jean-François Alcover, Dec 18 2015 *)
Table[Det[Table[GCD[2^i-1, 2^j-1], {i, n}, {j, n}]], {n, 20}] (* Harvey P. Dale, Sep 23 2022 *)
PROG
(PARI) a(n)=if(n<1, 0, (1/2)*prod(k=1, n, sumdiv(k, d, moebius(d)*2^(k/d))))
CROSSREFS
Sequence in context: A010790 A321631 A221101 * A324140 A296137 A086928
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 03 2013
STATUS
approved