login
A324140
Define b(n) and c(n) by b(0)=0, b(1)=c(0)=c(1)=1; b(n)=c(n-1)*c(n-2), c(n) = (b(n-1)+c(n-1))*(b(n-2)+c(n-2)); sequence gives b(n).
1
0, 1, 1, 2, 12, 144, 6912, 4478976, 150923575296, 3091996642249801728, 2121885128576356504259996418048, 30493397665311618727858440951711886636410099204096
OFFSET
0,4
MAPLE
f:=proc(n) option remember;
if n=0 then [0, 1];
elif n=1 then [1, 1]
else
[f(n-1)[2]*f(n-2)[2], (f(n-1)[1]+f(n-1)[2])*(f(n-2)[1]+f(n-2)[2])];
fi; end;
[seq(f(n), n=0..11)];
CROSSREFS
Cf. A324141.
Sequence in context: A321631 A221101 A187748 * A296137 A086928 A228551
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 20 2019
STATUS
approved