login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324137
Number of permutations of [n] that avoid the shuffle pattern s-k-t, where s = 123 and t = 123.
0
1, 1, 2, 6, 24, 120, 720, 5020, 39790, 352470, 3445032, 36775404, 425282892, 5292245764, 70471602994, 999394962306, 15032677450752, 238984379214960, 4002966472631160, 70448661940661068, 1299478739106621670, 25067231918730741438, 504674373639695198712, 10584965637367018566180
OFFSET
0,3
LINKS
Sergey Kitaev, Partially Ordered Generalized Patterns, Discrete Math. 298 (2005), no. 1-3, 212-229.
FORMULA
Let b(n) = A049774(n) = number of permutations avoiding a consecutive 123 pattern. Then a(n) = Sum_{i = 0..n-1} binomial(n-1,i) (2*b(i)*a(n-1-i) - b(i)*b(n-1-i)) for n >= 1 with a(0) = b(0) = 1. [See the recurrence for C_n on p. 220 of Kitaev (2005).] - Petros Hadjicostas, Oct 30 2019
CROSSREFS
Sequence in context: A263929 A324139 A324138 * A177552 A177547 A324136
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 16 2019
EXTENSIONS
More terms from Petros Hadjicostas, Oct 31 2019
STATUS
approved