login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086928
a(n) = 12*a(n-1) + a(n-2), with a(0) = 2 and a(1) = 12.
14
2, 12, 146, 1764, 21314, 257532, 3111698, 37597908, 454286594, 5489037036, 66322731026, 801361809348, 9682664443202, 116993335127772, 1413602685976466, 17080225566845364, 206376309488120834
OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to (6+sqrt(37)) = 12.0827625... a(0)/a(1)=2/12; a(1)/a(2)=12/146; a(2)/a(3)=146/1764; a(3)/a(4)=1764/21314; ... etc.
Lim_{n->infinity} a(n)/a(n+1) = 0.0827625... = 1/(6+sqrt(37)) = sqrt(37) - 6.
FORMULA
a(n) = (6+sqrt(37))^n + (6-sqrt(37))^n.
G.f.: (2-12*x)/(1-12*x-x^2). - Philippe Deléham, Nov 21 2008
EXAMPLE
a(4) = 21314 = 12*a(3) + a(2) = 12*1764 + 146 = (6+sqrt(37))^4 + (6-sqrt(37))^4 = 21313.999953 + 0.000047 = 21314.
MATHEMATICA
LinearRecurrence[{12, 1}, {2, 12}, 20] (* Harvey P. Dale, Oct 31 2016 *)
CROSSREFS
Cf. A001927.
Sequence in context: A187748 A324140 A296137 * A228551 A001927 A289987
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 21 2003
STATUS
approved