OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to (6+sqrt(37)) = 12.0827625... a(0)/a(1)=2/12; a(1)/a(2)=12/146; a(2)/a(3)=146/1764; a(3)/a(4)=1764/21314; ... etc.
Lim_{n->infinity} a(n)/a(n+1) = 0.0827625... = 1/(6+sqrt(37)) = sqrt(37) - 6.
LINKS
FORMULA
a(n) = (6+sqrt(37))^n + (6-sqrt(37))^n.
G.f.: (2-12*x)/(1-12*x-x^2). - Philippe Deléham, Nov 21 2008
EXAMPLE
a(4) = 21314 = 12*a(3) + a(2) = 12*1764 + 146 = (6+sqrt(37))^4 + (6-sqrt(37))^4 = 21313.999953 + 0.000047 = 21314.
MATHEMATICA
LinearRecurrence[{12, 1}, {2, 12}, 20] (* Harvey P. Dale, Oct 31 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 21 2003
STATUS
approved