login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086930
Smallest b>1 such that in base b representation the n-th prime is a repunit.
2
2, 4, 2, 10, 3, 16, 18, 22, 28, 2, 36, 40, 6, 46, 52, 58, 60, 66, 70, 8, 78, 82, 88, 96, 100, 102, 106, 108, 112, 2, 130, 136, 138, 148, 150, 12, 162, 166, 172, 178, 180, 190, 192, 196, 198, 14, 222, 226, 228, 232, 238, 15, 250, 256, 262, 268, 270, 276, 280, 282
OFFSET
2,1
COMMENTS
From Robert G. Wilson v, Mar 26 2014: (Start)
Obviously the first prime number, 2, can never become a repunit since it is even; therefore this sequence has the offset of 2.
Most terms, a(n), are one less than the n-th prime; e.g., for a(8) the eighth prime is 19_10 = 11_18. Therefore a(n) <= Pi(n)-1.
However there are some terms for which a(n) occurs before Pi(n)-1; e.g., for a(14) the fourteenth prime is 43_10 = 111_6.
Those indices, i, are: 4, 6, 11, 14, 21, 31, 37, 47, 53, 63, 82, 90, ..., . Prime(i) = A085104.
In those cases a(n) is a proper divisor of Prime(n)-1.
(End)
LINKS
Eric Weisstein's World of Mathematics, Repunit
EXAMPLE
n=6: A000040(6) = 13 = 1*3^2 + 1*3^1 + 1*3^0: ternary(13)='111' and binary(13)='1101', therefore a(6)=3.
MATHEMATICA
f[n_] := Block[{i = 1, d, p = Prime@ n}, d = Rest@ Divisors[p - 1]; While[id = IntegerDigits[p, d[[i]]]; id != Reverse@ id || Union@ id != {1}, i++]; d[[i]]]; Array[f, 60, 2]
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Sep 21 2003
STATUS
approved