login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086932
Number of non-congruent solutions of x^2 + y^2 == -1 (mod n).
5
1, 2, 4, 0, 4, 8, 8, 0, 12, 8, 12, 0, 12, 16, 16, 0, 16, 24, 20, 0, 32, 24, 24, 0, 20, 24, 36, 0, 28, 32, 32, 0, 48, 32, 32, 0, 36, 40, 48, 0, 40, 64, 44, 0, 48, 48, 48, 0, 56, 40, 64, 0, 52, 72, 48, 0, 80, 56, 60, 0, 60, 64, 96, 0, 48, 96, 68, 0, 96, 64, 72, 0, 72, 72, 80, 0, 96, 96
OFFSET
1,2
LINKS
László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
FORMULA
Multiplicative, with a(2^e) = 2 if e = 1 or 0 if e > 1, a(p^e) = (p-1)p^(e-1) if p == 1 (mod 4), a(p^e) = (p+1)p^(e-1) if p == 3 (mod 4). - Vladeta Jovovic, Sep 24 2003
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/(8*G) = 0.409404..., where G is Catalan's constant (A006752). - Amiram Eldar, Oct 18 2022
MATHEMATICA
a[n_] := If[n == 1, 1, Module[{p, e}, Product[{p, e} = pe; Which[p == 2 && e == 1, 2, p == 2 && e > 1, 0, Mod[p, 4] == 1, (p - 1) p^(e - 1), Mod[p, 4] == 3, (p + 1) p^(e - 1)], {pe, FactorInteger[n]}]]];
a /@ Range[1, 100] (* Jean-François Alcover, Sep 14 2019 *)
PROG
(PARI) a(n)={my(v=vector(n)); for(i=0, n-1, v[i^2%n + 1]++); sum(i=0, n-1, v[i+1]*v[(-1-i)%n + 1])} \\ Andrew Howroyd, Jul 15 2018
(PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, if(e>1, 0, 2), p^(e-1)*if(p%4==1, p-1, p+1)))} \\ Andrew Howroyd, Jul 15 2018
CROSSREFS
Sequence in context: A140875 A364315 A115368 * A331762 A221255 A341862
KEYWORD
mult,nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 21 2003
EXTENSIONS
More terms from John W. Layman, Sep 25 2003
STATUS
approved