login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086927
a(n) = 10*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 10.
17
2, 10, 102, 1030, 10402, 105050, 1060902, 10714070, 108201602, 1092730090, 11035502502, 111447755110, 1125513053602, 11366578291130, 114791295964902, 1159279537940150, 11707586675366402, 118235146291604170
OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to (5+sqrt(26)) = 10.099019...
Lim a(n)/a(n+1) as n approaches infinity = 0.099019... = 1/(5+sqrt(26)) = (sqrt(26)-5).
REFERENCES
Stefano Arnone, C Falcolini, F Moauro, M Siccardi, On Numbers in Different Bases: Symmetries and a Conjecture, Experimental Mathematics, Vol 26 2016, pp 197-209; http://dx.doi.org/10.1080/10586458.2016.1149125
FORMULA
a(n) = (5+sqrt(26))^n + (5-sqrt(26))^n.
G.f.: (2-10*x)/(1-10*x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 2*A088320(n). - R. J. Mathar, Feb 06 2020
EXAMPLE
a(4) = 10402 = 10*a(3) + a(2) = 10*1030 + 102 = (5+sqrt(26))^4 + (5-sqrt(26))^4 = 10401.999903 + 0.000097 = 10402.
MATHEMATICA
RecurrenceTable[{a[0] == 2, a[1] == 10, a[n] == 10 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)
PROG
(Magma) I:=[2, 10]; [n le 2 select I[n] else 10*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016
CROSSREFS
Cf. A036336.
Sequence in context: A291101 A036336 A070842 * A342108 A135058 A346672
KEYWORD
nonn,easy
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 21 2003
EXTENSIONS
More terms from Jon E. Schoenfield, May 15 2010
STATUS
approved