login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221101
E.g.f. satisfies: A(x) = Sum_{n>=0} log(1 + x*A(n*x))^n/n!.
2
1, 1, 2, 12, 144, 3160, 118380, 7174188, 692356896, 104696597808, 24680489921280, 9010186432576560, 5073501307520289600, 4385657278007399474496, 5797249519065509217375936, 11674185903250032386477342880, 35692663320428574506107140979200
OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} Stirling1(n,k) * A(k*x)^n/n!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 144*x^4/4! + 3160*x^5/5! +...
where
A(x) = 1 + log(1 + x*A(x)) + log(1 + x*A(2*x))^2/2! + log(1 + x*A(3*x))^3/3! + log(1 + x*A(4*x))^4/4! +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, log(1+x*subst(A, x, m*x+x*O(x^n)))^m/m!)); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, Stirling1(m, k)*subst(A, x, k*x+x*O(x^n))^m)*x^m/m!)); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A035049 A010790 A321631 * A187748 A324140 A296137
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 01 2013
STATUS
approved