login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330349
a(n) = A070826(n+1) - 2^(n-1).
1
2, 13, 101, 1147, 14999, 255223, 4849781, 111546307, 3234846359, 100280244553, 3710369066381, 152125131761557, 6541380665830919, 307444891294237513, 16294579238595005981, 961380175077106286767
OFFSET
1,1
COMMENTS
Conjecture: For each value of n, the power of each prime number in the prime factorization of a(n) is equal to 1.
EXAMPLE
a(4) = 1147 = 31*37.
a(10) = A070826(11) - 2^9 = 100280245065 - 512 = 100280244553 = A000040(4129119109).
PROG
(PARI) a(n) = prod(k=1, n+1, prime(k))/2 - 2^(n-1); \\ Michel Marcus, Dec 11 2019
(Python)
from sympy import primorial
def A330349(n): return (primorial(n+1)>>1)-(1<<n-1) # Chai Wah Wu, Jul 21 2022
CROSSREFS
Sequence in context: A187746 A030519 A141116 * A234299 A301355 A077246
KEYWORD
nonn
AUTHOR
Ahmad J. Masad, Dec 11 2019
STATUS
approved