login
A002684
Denominators of coefficients for repeated integration.
(Formerly M4307 N1802)
1
6, 360, 10080, 259200, 239500800, 145297152000, 15692092416000, 16005934264320000, 8515157028618240000, 3372002183332823040000, 4653363012999295795200000, 8469120683658718347264000000
OFFSET
0,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Coefficients for repeated integration with central differences, Journal of Mathematics and Physics, 28 (1949), 54-61.
FORMULA
a(n) is the denominator of -(n/2)M(n)-(2n+2)M(n+1), where M(n)=(2/(2n+1)!)*int(t*product(t^2-k^2, k=1..n), t=0..1). - Emeric Deutsch, Jan 25 2005
MAPLE
M:=n->(2/(2*n+1)!)*int(t*product(t^2-k^2, k=1..n), t=0..1):B:=n->-(n/2)*M(n)-(2*n+2)*M(n+1): seq(denom(B(n)), n=0..13); # Emeric Deutsch, Jan 25 2005
CROSSREFS
KEYWORD
nonn,frac
EXTENSIONS
More terms from Emeric Deutsch, Jan 25 2005
STATUS
approved